
Guide to the
IBM Informix 4GL
Interactive Debugger
Version 7.3
January 2002
Part No. 000-5297A

ii Guide to the IBM Infor
This document contains proprietary information of IBM. It is provided under a license agreement and is
protected by copyright law. The information contained in this publication does not include any product
warranties, and any statements provided in this manual should not be interpreted as such.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information
in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1996, 2002. All rights reserved.

US Government User Restricted Rights—Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

Note:
Before using this information and the product it supports, read the information in the appendix
entitled “Notices.”
mix 4GL Interactive Debugger

Table of Contents

Table of
Contents
Introduction
In This Introduction 3
About This Manual 3

Organization of This Manual 4
Types of Users 5
Software Dependencies 6
Assumptions About Your Locale. 6
Debugger Demonstration Database and Examples 7
Accessing Databases from Within 4GL. 8

Documentation Conventions 8
Typographical Conventions 9
Icon Conventions 10
Syntax Conventions 11

Additional Documentation 15
Documentation Included with 4GL 15
On-Line Manuals 16
On-Line Help 16
On-Line Error Messages. 16
Related Reading 17

Informix Welcomes Your Comments 18

iv Guide
Chapter 1 Introduction to the Debugger
In This Chapter 1-3
Introducing the Debugger 1-3
Using the Debugger 1-5

The Debugger Screens 1-5
Tracepoints 1-10
Breakpoints 1-11
Resuming Execution of a Program 1-12
Viewing the Values of Program Variables 1-14
Analyzing Fatal Errors 1-17
Short Forms of Commands 1-18
Function Keys 1-19
Requesting Help 1-19

Chapter 2 Getting Started with the Debugger
In This Chapter 2-3
The customer.4gl Program 2-4

Compiling the Form and Program 2-10
Operating the Debugger 2-11

Viewing the Source Window 2-12
Working with the Command Window 2-17
Starting the Debugger 2-20
The Terminal Display State 2-23
Restoring the Environment 2-29
Saving the Environment 2-29

Chapter 3 Tracing Logic of the customer Program
In This Chapter 3-3
Restoring the Environment 3-4
The TRACE Command 3-5

Tracing a Line Number 3-5
Tracing a Variable 3-6
Tracing a Function 3-7
Tracing All Functions 3-8
Setting a Tracepoint 3-8

Running with a Tracepoint 3-10
The DUMP Command 3-17

The GLOBALS Option 3-17
The ALL Option 3-17
 to the IBM Informix 4GL Interactive Debugger

Dumping to a File 3-18
Executing the DUMP Command 3-18

Interrupting Program Execution 3-18
Interrupting a Program Versus Interrupting the Debugger . . 3-19
Entering an Interrupt 3-19

Combining Commands 3-25
Removing Tracepoints 3-27
The CONTINUE Command 3-29

Sending an Interrupt to a Program 3-29
Entering the CONTINUE Command 3-29

Saving and Exiting 3-32

Chapter 4 Analyzing a Logical Error in the customer Program
In This Chapter 4-3
Observing Problems with the Program 4-4

Choosing Delete Twice in Succession 4-4
Choosing Delete and Modify in Succession 4-6

Accessing the Debugger 4-8
The Restored Environment 4-8
Modifying the Environment 4-9

The BREAK Command 4-10
Breaking at a Line Number 4-11
Breaking at a Variable 4-11
Breaking at a Function 4-12
Breaking If an Expression Is True. 4-12
Specifying a Count 4-13
Specifying a Condition 4-13
Setting the First Breakpoint for the Current Session 4-14

The DISABLE Command 4-16
Reaching the First Breakpoint 4-17
The PRINT Command 4-19

Printing the Value of a Variable 4-20
Printing the Values of Record Members 4-20
Entering the PRINT Command 4-21

The LET Command 4-22
The STEP Command 4-23

Entering the STEP Command 4-23
The NOBREAK Command 4-25
Setting the Second Breakpoint for the Current Session 4-25

Reaching the Second Breakpoint 4-27
Table of Contents v

vi Guide
Saving and Exiting 4-29
Correcting the customer Program 4-31

Chapter 5 A Multi-Module Program: cust_order
In This Chapter 5-3
The cust_order Program 5-4

MODULE #1: globals.4gl 5-5
MODULE #2: main.4gl 5-6
MODULE #3: order.4gl 5-10

Defining and Compiling the Program 5-15
Compiling the Program 5-17

Working with Multi-Module Programs 5-18
Viewing a Module in the Source Window 5-19

Viewing a Function in a Different Module 5-21
Searching the Current Module 5-22
Setting Tracepoints or Breakpoints at a Line Number 5-22

Module Variables 5-23
Setting Tracepoints or Breakpoints on Module Variables . . . 5-23
Module Variables and the DUMP Command 5-24

Chapter 6 Tracing Logic of the cust_order Program
In This Chapter 6-3
Overview of the Debugging Session 6-4
Setting Tracepoints for the Current Session 6-5

Setting the First Tracepoint 6-5
Setting the Second Tracepoint 6-6

Setting Breakpoints for the Current Session 6-8
Setting Tracepoints and Breakpoints Without Enabling Them . 6-8
Setting the First Breakpoint 6-8
Setting the Second Breakpoint 6-10

Tracing Program Logic: Example #1 6-12
The ENABLE Command 6-12
Starting the Session 6-13
Reaching the First Breakpoint 6-15
Resuming Operation Following the First Breakpoint 6-20

Tracing Program Logic: Example #2 6-28
Modifying the Debugging Environment 6-29
Resuming Execution 6-30
Reaching the Second Breakpoint 6-31
 to the IBM Informix 4GL Interactive Debugger

Resuming Operation Following the Second Breakpoint . . . 6-33
Executing a Function Interactively 6-35

Execution of the Tracepoints 6-41
Contents of the order1 File 6-42

Chapter Summary 6-46

Chapter 7 Analyzing Runtime Errors in the cust_order Program
In This Chapter 7-3
Encountering Runtime Errors 7-4

Fatal Errors When Running a Program 7-4
Fatal Errors When Debugging a Program 7-4

Starting the Session 7-5
Fatal Error #1: Exceeding Terminal Display Limits 7-6

Producing the First Error 7-7
The WHERE Command 7-10
A Possible Solution 7-13

Fatal Error #2: Exceeding Array Bounds 7-14
Producing the Second Error 7-17
The VARIABLE Command 7-18
The PRINT Command 7-20
A Possible Solution 7-21

Correcting the Program 7-22
Correcting the order Module 7-23

Recompiling the Program 7-23
Verifying the Corrections 7-24
Chapter Summary 7-26

Chapter 8 The Debugging Environment
In This Chapter 8-3
Debugger Screens and Parameters 8-3
The Debugging Process 8-5

Working in the Programmer’s Environment 8-6
Working at the Command Line 8-12

Specifying the Source Program Search Path 8-19
Specifying Keyboard Aliases 8-20
The Debugger Screens and Windows 8-21

Descriptions of the Debugger Displays. 8-22
Setting Terminal Display Parameters 8-26

Parameters Controlled by the TURN Command 8-27
Parameters Controlled by the TIMEDELAY Command . . . 8-29
Table of Contents vii

viii Guid
Parameters Controlled by the GROW Command 8-30
The APPLICATION DEVICE Command. 8-32

Establishing Breakpoints and Tracepoints 8-33
The BREAK Command. 8-33
The TRACE Command. 8-37
Restrictions on BREAK and TRACE Commands 8-39

Displaying and Copying Parameters 8-40
Displaying Values with the LIST Command 8-40
Displaying Values with ALIAS 8-41
Displaying Values with USE 8-42
Saving Values with the WRITE Command 8-42
Establishing Values with the READ Command 8-44

Establishing Parameters from Files 8-45
Establishing System Default Parameters 8-45
Establishing User Default Parameters. 8-45
Establishing Program Default Parameters 8-46
Using Nondefault .4db Files 8-46

Exiting from the Debugging Environment 8-49
Chapter Summary 8-50

Chapter 9 The Debugger Commands
In This Chapter 9-5
Functionality of the Debugger Commands 9-6

Cursor Movement Keys and Search Commands 9-6
Control Keys for Screen Management. 9-10
Screen Management Commands 9-11
Commands to Display Information 9-12
Commands to Control Breakpoints and Tracepoints. 9-13
Commands to Specify Values 9-14
Commands for Program Execution 9-15

Scope of Reference 9-16
The Scope of Reference Rules 9-17
Example of Qualifying Variables 9-19

Active Functions and Variables 9-20
The Status of Program Execution 9-20
Active Functions 9-21
Active Variables 9-22
Examples of Inactive Functions and Variables 9-22

Short Forms of Keywords 9-24
e to the IBM Informix 4GL Interactive Debugger

Conventions for Command Syntax Notation 9-29
Capital Letters 9-29
Italics . 9-30
Brackets 9-30
Pipe Symbol 9-31
Braces . 9-31
Underscore 9-31
Ellipsis Points 9-32

Syntax of the Debugger Commands 9-32
Specific Restrictions on Debugger Commands 9-33
Multiple Command and Continuation Symbols. 9-34
ALIAS . 9-35
APPLICATION DEVICE 9-38
BREAK 9-40
CALL . 9-45
CLEANUP 9-47
CONTINUE 9-49
DATABASE 9-51
DISABLE 9-53
DUMP . 9-55
ENABLE 9-57
ESCAPE 9-59
EXIT . 9-60
FUNCTIONS 9-61
GROW 9-63
HELP . 9-65
INTERRUPT 9-67
LET . 9-69
LIST . 9-72
NOBREAK 9-74
NOTRACE 9-76
PRINT . 9-78
READ . 9-80
REDRAW 9-82
RUN . 9-83
SCREEN 9-84
SEARCH 9-86
STEP . 9-88
TIMEDELAY 9-91
TOGGLE 9-93
TRACE 9-95
TURN . 9-100
Table of Contents ix

x Guide
USE . 9-103
VARIABLE 9-105
VIEW . 9-107
WHERE . 9-109
WRITE . 9-111

Appendix A Environment Variables

Appendix B Calling C Functions

Appendix C Sample Programs

Appendix D Notices

Error Messages

Index
to the IBM Informix 4GL Interactive Debugger

Introduction
Introduction
In This Introduction 3

About This Manual 3
Organization of This Manual 4
Types of Users 5
Software Dependencies 6
Assumptions About Your Locale 6
Debugger Demonstration Database and Examples 7
Accessing Databases from Within 4GL 8

Documentation Conventions 8
Typographical Conventions 9
Icon Conventions 10

Feature, Product, and Platform Icons 10
Compliance Icons 10

Syntax Conventions 11
Elements That Can Appear on the Path 12
How to Read a Syntax Diagram 14

Additional Documentation 15
Documentation Included with 4GL 15
On-Line Manuals 16
On-Line Help 16
On-Line Error Messages. 16
Related Reading 17

Informix Welcomes Your Comments 18

2 Guide
to the IBM Informix 4GL Interactive Debugger

In This Introduction
This Introduction provides an overview of the information in this manual
and describes the conventions it uses.

About This Manual
This manual is both an introduction to the INFORMIX-4GL Interactive
Debugger and a comprehensive reference of Debugger commands and
features. The organization of the guide is summarized here and discussed
in detail in the next section:

■ Chapter 1 presents an overview of Debugger features, while
Chapters 2 through 7 introduce the debugging environment and
present typical debugging strategies in a series of debugging
sessions. As you work through these sessions, you will learn
debugging strategies suited to both single- and multi-module 4GL
application programs.

■ Chapters 8 and 9 are reference chapters that provide a detailed
discussion of all Debugger commands and features.
Introduction 3

Organization of This Manual
Organization of This Manual
To meet the needs of both new and experienced Debugger users, this guide
is in two parts: a seven-chapter tutorial and a two-chapter reference section.

The tutorial chapters are as follows:

■ Chapter 1, “Introduction to the Debugger,” presents an overview of
Debugger features.

■ Chapter 2, “Getting Started with the Debugger,” introduces the
debugging environment and discusses basic operations such as how
to invoke the Debugger from the Programmer’s Environment and
how to exit from the Debugger.

■ Chapter 3, “Tracing Logic of the customer Program,” presents a
debugging session with the single-module customer program
(supplied with the Debugger software). To familiarize yourself with
the customer program logic, you will use tracepoints, an important
Debugger feature.

■ Chapter 4, “Analyzing a Logical Error in the customer Program,”
continues debugging of the customer program. As you diagnose a
logical program error, you will learn how breakpoints suspend
program execution so you can gather information or interact with
the program.

■ Chapter 5, “A Multi-Module Program: cust_order,” contains
important information about multi-module programs, such as how
to compile them from the Programmer’s Environment, how to
display specified modules in the Source window, and how to set
breakpoints and tracepoints within selected modules.

■ Chapter 6, “Tracing Logic of the cust_order Program,” adds to your
knowledge of breakpoints and tracepoints as debugging of the
cust_order program continues. The chapter introduces the CALL
command to interactively call a function.

■ Chapter 7, “Analyzing Runtime Errors in the cust_order Program,”
concludes debugging of the cust_order program as you learn how to
diagnose runtime errors.
4 Guide to the IBM Informix 4GL Interactive Debugger

Types of Users
The reference chapters are as follows:

■ Chapter 8, “The Debugging Environment,” discusses the debugging
environment in detail and explains how you can customize the
environment to suit your needs.

■ Chapter 9, “The Debugger Commands,” is a detailed, alphabetical
listing of Debugger command syntax.

The appendixes are as follows:

■ Appendix A, “Environment Variables,” describes the environment
variables recognized by 4GL and the Debugger.

■ Appendix B, “Calling C Functions,” illustrates how to use the
Debugger to analyze 4GL programs that call programmer-defined C
functions or INFORMIX-ESQL/C functions.

■ Appendix C, “Sample Programs,” discusses the sample programs
used during the debugging sessions in this guide.

■ The “Error Messages” section lists the Debugger error codes,
explains their meanings, and suggests ways to avoid the errors.

Types of Users
This manual is written for all 4GL users. You do not need database
management experience or familiarity with relational database concepts to
use this manual. Knowledge of SQL (Structured Query Language) and
experience using a high-level programming language are useful.

To follow the logic of the sample debugging sessions, you need a general
understanding of 4GL statement syntax and features. You should also be
familiar with the Programmer’s Environment, specifically, how to correct
and recompile 4GL program modules. (You will learn how to compile multi-
module programs in the tutorial chapters.)
Introduction 5

Software Dependencies
Software Dependencies
This manual is written with the assumption that you are using an Informix
database server, Version 7.x or later.

Informix offers two implementations of the 4GL application development
language:

■ The 4GL C Compiler uses a preprocessor to generate ESQL/C source
code. This code is preprocessed in turn to produce C source code,
which is then compiled and linked as object code in an executable
command file.

■ The INFORMIX-4GL Rapid Development System uses a compiler to
produce pseudo-machine code (called p-code) in a single step. You then
invoke a runner to execute the p-code version of your application.
(The Rapid Development System is sometimes abbreviated as RDS.)

Both versions of 4GL use the same 4GL statements. The differences between
the two versions of 4GL are explained in the INFORMIX-4GL Reference.

You can easily use applications developed with an earlier version of 4GL,
such as Version 4.0 or 4.1, with this version of 4GL. Also, if you have 4GL
applications written for the Windows environment, you can compile and run
the applications in the UNIX environment.

Assumptions About Your Locale
Informix products can support many languages, cultures, and code sets. All
culture-specific information is brought together in a single environment,
called a GLS (Global Language Support) locale.

The examples in this manual are written with the assumption that you are
using the default locale, en_us.8859-1. This locale supports U.S. English
format conventions for dates, times, and currency. In addition, this locale
supports the ISO 8859-1 code set, which includes the ASCII code set plus
many 8-bit characters such as é, è, and ñ.

If you plan to use non-ASCII characters in your data or your SQL identifiers,
or if you want to conform to the nondefault collation rules of character data,
you need to specify the appropriate nondefault locale.
6 Guide to the IBM Informix 4GL Interactive Debugger

Debugger Demonstration Database and Examples
For instructions on how to specify a nondefault locale, additional syntax, and
other considerations related to GLS locales, see the Informix Guide to GLS
Functionality.

Debugger Demonstration Database and Examples
The Debugger software includes the files you need to complete the
debugging sessions in the tutorial chapters of this guide. These files, along
with the Debugger program files, are copied to a directory when you install
the Debugger as explained in the INFORMIX-4GL Installation Guide.

As applicable, the sample programs use the same program database, stores7,
which contains information about a fictitious wholesale sporting-goods
distributor. Before you begin the tutorial chapters, you should make a copy
of the database.

To make a copy of the stores7 database

1. Create a directory to be your working directory during the
debugging sessions.

You can remove the directory and its contents when you are through.

2. Make sure the new directory is included within your PATH
environment variable.

PATH lists the directories in which your system looks for executable
files. (See Appendix A for details.)

3. Make the new directory your current directory and run the dbdemo
program (supplied with the Debugger) to create the demonstration
database:

dbdemo

As you experiment with the sample programs in this guide, you can modify
the database contents (delete a customer, add an order, and so on). This might
cause you to see results that differ from those presented in this manual. You
can restore the database to its original condition at any time by running the
dbdemo program again.
Introduction 7

Accessing Databases from Within 4GL
Accessing Databases from Within 4GL
You access a database in a 4GL program by placing SQL statements in the
program. However, the 4GL compiler does not recognize some SQL state-
ments. For example, no SQL statements and syntax extensions introduced by
Informix servers of Version 5.0 and later are recognized within this version of
4GL.

To include these statements in your 4GL program, you must either use the
PREPARE statement so that the compiler knows to pass them on to the server
for processing, or enclose them blocks using the SQL...END SQL statements.
For complete information about how to do this, see the INFORMIX-4GL
Reference.

For additional information on SQL statements, see the documentation for
your database server, including the Informix Guide to SQL: Syntax, or Informix
Guide to SQL: Reference.

Documentation Conventions
This section describes the conventions that this manual uses. These
conventions make it easier to gather information from this and other volumes
in the documentation set.

The following conventions are discussed:

■ Typographical conventions

■ Icon conventions

■ Syntax conventions
8 Guide to the IBM Informix 4GL Interactive Debugger

Typographical Conventions
Typographical Conventions
This manual uses the following conventions to introduce new terms,
illustrate screen displays, describe command syntax, and so forth.

Tip: When you are instructed to “enter” characters or to “execute” a command,
immediately press RETURN after the entry. When you are instructed to “type” the
text or to “press” other keys, no RETURN is required.

Convention Meaning

KEYWORD All primary elements in a programming language statement
(keywords) appear in uppercase letters in a serif font.

italics
italics
italics

Within text, new terms and emphasized words appear in italics.
Within syntax and code examples, variable values that you are
to specify appear in italics.

boldface
boldface

Names of program entities (such as classes, events, and tables),
environment variables, file and pathnames, and interface
elements (such as icons, menu items, and buttons) appear in
boldface.

monospace
monospace

Information that the product displays and information that you
enter appear in a monospace typeface.

KEYSTROKE Keys that you are to press appear in uppercase letters in a sans
serif font.

♦ This symbol indicates the end of product- or platform-specific
information.
Introduction 9

Icon Conventions
Icon Conventions
Throughout the documentation, you will find text that is identified by several
different types of icons. This section describes these icons.

Feature, Product, and Platform Icons

Feature, product, and platform icons identify paragraphs that contain
feature-specific, product-specific, or platform-specific information.

These icons can apply to a row in a table, one or more paragraphs, or an entire
section. A ♦ symbol indicates the end of the feature-specific, product-
specific, or platform-specific information.

Compliance Icons

Compliance icons indicate paragraphs that provide guidelines for complying
with a standard.

Icon Description

Identifies information that relates to the Informix Global
Language Support (GLS) feature

Identifies information or syntax that is specific to Informix
Dynamic Server and its editions

Identifies information or syntax that is specific to
INFORMIX-SE

Icon Description

Identifies information that is specific to an ANSI-compliant
database

Identifies functionality that conforms to X/Open

Identifies information that is an Informix extension to
ANSI SQL-92 entry-level standard SQL

GLS

IDS

SE

ANSI

X/O

+

10 Guide to the IBM Informix 4GL Interactive Debugger

Syntax Conventions
These icons can apply to a row in a table, one or more paragraphs, or an entire
section. A ♦ symbol indicates the end of the compliance information.

Syntax Conventions
SQL statement syntax is described in the Informix Guide to SQL: Syntax.
The syntax of other 4GL statements is described in the INFORMIX-4GL
Reference.

This section describes conventions for syntax diagrams. Each diagram
displays the sequences of required and optional keywords, terms, and
symbols that are valid in a given statement or segment, as Figure 1 shows.

Each syntax diagram begins at the upper-left corner and ends at the upper-
right corner with a vertical terminator. Between these points, any path that
does not stop or reverse direction describes a possible form of the statement.
(For a few diagrams, notes in the text identify path segments that are
mutually exclusive.)

Syntax elements in a path represent terms, keywords, symbols, and segments
that can appear in your statement. The path always approaches elements
from the left and continues to the right, except in the case of separators in
loops. For separators in loops, the path approaches counterclockwise. Unless
otherwise noted, at least one blank character separates syntax elements.

Figure 1
Example of a Simple Syntax Diagram

OPEN FORM form FROM "filename"
Introduction 11

Syntax Conventions
Elements That Can Appear on the Path

You might encounter one or more of the following elements on a path.

Element Description

KEYWORD A word in UPPERCASE letters is a keyword. You must
spell the word exactly as shown; however, you can use
either uppercase or lowercase letters.

(. , ; @ + * - /) Punctuation and other nonalphanumeric characters
are literal symbols that you must enter exactly as
shown.

" "
' '

Double quotes must be entered as shown. If you
prefer, you can replace the pair of double quotes with
a pair of single quotes, but you cannot mix double and
single quotes.

variable A word in italics represents a value that you must
supply. A table immediately following the diagram
explains the value.

A reference in a box represents a subdiagram. Imagine
that the subdiagram is spliced into the main diagram
at this point. When a page number is not specified, the
subdiagram appears on the same page. The aspect
ratios of boxes are not significant.

A reference to SQL:R in a syntax diagram represents
an SQL statement or segment that is described in the
Informix Guide to SQL: Reference. Imagine that the
segment were spliced into the diagram at this point.

(1 of 2)

ATTRIBUTE Clause
p. 3-288

ATTRIBUTE Clause

Procedure Name
see SQL:R
12 Guide to the IBM Informix 4GL Interactive Debugger

Syntax Conventions
An icon is a warning that this path is valid only for
some products, or only under certain conditions.
Characters on the icons indicate what products or
conditions support the path.

These icons might appear in a syntax diagram:

This path is valid only for INFORMIX-SE.

This path is valid only for Informix
Dynamic Server.

A shaded option is the default action.

Syntax within a pair of arrows is a subdiagram.

The vertical line terminates the syntax diagram.

A branch below the main path indicates an optional
path. (Any term on the main path is required, unless
a branch can circumvent it.)

A set of multiple branches indicates that a choice
among more than two different paths is available.

A loop indicates a path that you can repeat.
Punctuation along the top of the loop indicates the
separator symbol for list items. If no symbol appears,
a blank space is the separator.

A gate () on a path indicates that you can only use
that path the indicated number of times, even if it is
part of a larger loop. You can specify size no more than
three times within this statement segment.

Element Description

(2 of 2)

SE

SE

IDS

ALL

NOT

IS NULL

ERROR

NOT FOUND

WARNING

,

variable

statement

3

,

size

3

Introduction 13

Syntax Conventions
How to Read a Syntax Diagram

Figure 2 shows a syntax diagram that uses most of the path elements that the
previous table lists.

To use this diagram to construct a statement, start at the top left with the
keyword DELETE FROM. Then follow the diagram to the right, proceeding
through the options that you want.

Figure 2 illustrates the following steps:

1. Type DELETE FROM.

2. You can delete a table, view, or synonym:

■ Type the table name, view name, or synonym, as you desire.

■ You can type WHERE to limit the rows to delete.

■ If you type WHERE and you are using DB-Access or the SQL Editor,
you must include the Condition clause to specify a condition to
delete. To find the syntax for specifying a condition, go to the
“Condition” segment on the specified page.

■ If you are using ESQL/C, you can include either the Condition
clause to delete a specific condition or the CURRENT OF cursor
clause to delete a row from the table.

3. Follow the diagram to the terminator.

Your DELETE statement is complete.

Figure 2
Example of a Syntax Diagram

DELETE FROM

WHERE

CURRENT OF cursor

view

synonym

table

E/C

Condition
p. 4-5
14 Guide to the IBM Informix 4GL Interactive Debugger

Additional Documentation
Additional Documentation
For additional information, you might want to refer to the following types of
documentation:

■ Documentation included with 4GL

■ On-line manuals

■ On-line help

■ On-line error messages

■ Related reading

Documentation Included with 4GL
The 4GL documentation set includes the following additional manuals:

■ INFORMIX-4GL Installation Guide is a pamphlet that describes how to
install the various 4GL products.

■ INFORMIX-4GL Reference is a day-to-day, keyboard-side companion
for 4GL programmers. It describes the features and syntax of the 4GL
language, including 4GL statements, forms, reports, and the built-in
functions and operators.

■ INFORMIX-4GL Concepts and Use introduces 4GL and provides the
context needed to understand the other manuals in the documen-
tation set. It covers 4GL goals (what kinds of programming the
language is meant to facilitate), concepts and nomenclature (parts of
a program, ideas of database access, screen form, and report gener-
ation), and methods (how groups of language features are used
together to achieve particular effects).

■ INFORMIX-4GL by Example is a collection of 30 annotated 4GL
programs. Each is introduced with an overview; then the program
source code is shown with line-by-line notes. The program source
files are distributed as text files with the product; scripts that create
the demonstration database and copy the applications are also
included.
Introduction 15

On-Line Manuals
■ INFORMIX-4GL Quick Syntax contains the syntax diagrams from the
INFORMIX-4GL Reference, the Guide to the INFORMIX-4GL Interactive
Debugger, and the Informix Guide to SQL: Syntax.

■ The documentation notes, which contain additions and corrections
to the manuals, and the release notes are located in the directory
where the product is installed. Please examine these files because
they contain vital information about application and performance
issues.

On-Line Manuals
The Informix Answers OnLine CD allows you to print chapters or entire
books and perform full-text searches for information in specific books or
throughout the documentation set. You can install the documentation or
access it directly from the CD. For information about how to install, read, and
print on-line manuals, see the installation insert that accompanies Answers
OnLine. You can also access Answers OnLine on the Web at the following
URL: www.informix.com/answers.

On-Line Help
4GL provides on-line help; invoke help by pressing CONTROL-W.

On-Line Error Messages
Use the finderr script to display a particular error message or messages on
your screen. The script is located in the $INFORMIXDIR/bin directory.

The finderr script has the following syntax:

msg_num indicates the number of the error message to display. Error
messages range from -1 to -32000. Specifying the - sign is
optional.

finderr msg_num
16 Guide to the IBM Informix 4GL Interactive Debugger

Related Reading
For example, to display the -359 error message, you can enter either of the
following:

finderr -359

or, equivalently:

finderr 359

The following example demonstrates how to specify a list of error messages.
The example also pipes the output to the UNIX more command to control the
display. You can also direct the output to another file so that you can save or
print the error messages:

finderr 233 107 113 134 143 144 154 | more

A few messages have positive numbers. These messages are used solely
within the application tools. In the unlikely event that you want to display
them, you must precede the message number with the + sign.

The messages numbered -1 to -100 can be platform dependent. If the message
text for a message in this range does not apply to your platform, check the
operating system documentation for the precise meaning of the message
number.

Related Reading
The following Informix database server publications provide additional
information about the topics that this manual discusses:

■ Informix database servers and the SQL language are described in
separate manuals, including the Informix Guide to SQL: Tutorial,
Informix Guide to SQL: Syntax, and Informix Guide to SQL: Reference.

■ Information about setting up Informix database servers is provided
in your Administrator’s Guide.
Introduction 17

Informix Welcomes Your Comments
Informix Press, in partnership with Prentice Hall, publishes books about
Informix products. Authors include experts from Informix user groups,
employees, consultants, and customers. Recent titles about 4GL include:

■ Advanced INFORMIX-4GL Programming, Art Taylor, 1995

■ Programming Informix SQL/4GL: A Step-by-Step Approach, Cathy Kipp,
1998

■ Informix Basics, Glenn Miller, 1998

You can access Informix Press on the Web at the following URL:

www.informix.com/ipress

Informix Welcomes Your Comments
Let us know what you like or dislike about our manuals. To help us with
future versions of our manuals, we want to know about any corrections or
clarifications that you would find useful. Include the following information:

■ The name and version of the manual that you are using

■ Any comments that you have about the manual

■ Your name, address, and phone number

Write to us at the following address:

Informix Software, Inc.
Tools Technical Publications Department
4100 Bohannon Drive
Menlo Park, CA 94025

If you prefer to send electronic mail, our address is:

doc@informix.com

We appreciate your suggestions.

Important: The doc alias is monitored only by the Informix departments that create
and maintain manuals and on-line documentation files. It is not an appropriate
channel for technical support issues, sales inquiries, or questions about the avail-
ability of Informix products.
18 Guide to the IBM Informix 4GL Interactive Debugger

1
Chapter
Introduction to the Debugger
In This Chapter . 1-3

Introducing the Debugger 1-3

Using the Debugger 1-5
The Debugger Screens 1-5

The Application Screen 1-5
The Debugger Screen 1-7

Tracepoints . 1-10
Breakpoints . 1-11
Resuming Execution of a Program 1-12
Viewing the Values of Program Variables 1-14
Analyzing Fatal Errors 1-17
Short Forms of Commands 1-18
Function Keys 1-19
Requesting Help 1-19

1-2 Guid
e to the IBM Informix 4GL Interactive Debugger

In This Chapter
This chapter introduces important concepts about the INFORMIX-4GL
Interactive Debugger:

■ What a debugger is

■ How you can use the Debugger to learn more about programs
created with the INFORMIX-4GL Rapid Development System

■ What the principal commands and capabilities of the Debugger are

Step-by-step instructions for using the Debugger begin in Chapter 2,
“Getting Started with the Debugger.”

Introducing the Debugger
The Debugger is a set of tools that allow you to interact with your
INFORMIX-4GL programs while they are running. You can perform the
following tasks with the Debugger:

■ Quickly familiarize yourself with programs or program segments
that someone else has written.

■ Determine the source of errors within your programs.

■ Learn more about the workings of the 4GL language.
Introduction to the Debugger 1-3

Introducing the Debugger
If you suspect, for example, that your program is not producing correct
output, and you do not have the Debugger, you can take some or all of the
following actions:

■ Review your source code.

■ Trace the execution of the program on paper, using sample data. This
is sometimes called desk checking.

■ Place additional DISPLAY statements in your program to print the
contents of variables at various points of program execution.

The Debugger makes it easier to verify that your 4GL programs work
correctly, and allows you to detect and fix errors much more efficiently than
with these conventional techniques. You can use the Debugger to discover
the cause of both logical errors (errors that cause the program to produce
undesirable results) and fatal errors (errors that prevent the program from
continuing execution).

Specifically, you can take the following actions with the Debugger:

■ Interrupt a program and resume execution from the point of
interruption.

■ Review your source code as it executes, stepping through as many
lines at a time as you desire.

■ Change the values of program variables, and resume execution with
the new values.

■ Set tracepoints to monitor the execution of a specific line of code or
function, or when the value of a variable changes.

■ Set breakpoints to suspend program execution at a specific line of code
or function, when the value of a variable changes, or when a specific
condition becomes true.

The Debugger is a source language debugger. You do not need to know any
programming language other than 4GL in order to use the Debugger. You can
access the Debugger either from the 4GL Programmer’s Environment or from
the command line.
1-4 Guide to the IBM Informix 4GL Interactive Debugger

Using the Debugger
Using the Debugger
The following sections describe the major features and capabilities of the
Debugger, and illustrate ways in which you can use the Debugger to learn
more about your 4GL programs.

The Debugger Screens
To facilitate interaction with your programs, the Debugger divides the
terminal environment into two screens. These are as follows:

■ The Application screen

■ The Debugger screen

The Application Screen

The Application screen is used to display the input and output of your 4GL
program. The program appears exactly as if it were running outside the
Debugger. You can make menu selections, enter and retrieve data, and
respond to prompts as usual.
Introduction to the Debugger 1-5

The Debugger Screens
For example, Figure 1-1 illustrates the appearance of the Application screen
during a debugging session with the customer program introduced in
Chapter 2, “Getting Started with the Debugger.” The Query option has been
chosen, and search criteria are being entered into the form.

Figure 1-1
The Application Screen with the customer Program

CUSTOMER: Add Query Modify Delete Exit
Search for a customer.
- -

CUSTOMER FORM

Number: [105|]

First Name: [] Last Name: []

Company: []

Address: []
[]

City: []

State: [] Zipcode: []

Telephone: []
- -
1-6 Guide to the IBM Informix 4GL Interactive Debugger

The Debugger Screens
The Debugger Screen

To monitor source code, and to interact with an executing program, you must
suspend execution of the program and display the Debugger screen. You can
display the Debugger screen any time a program is running by pressing the
Interrupt key (usually DEL or CTRL-C).

If you now press the Interrupt key to suspend execution of the customer
program, the Debugger screen appears as in Figure 1-2.

Figure 1-2
The Debugger Screen with the customer Program

175 SLEEP 3
176
177 MESSAGE ""
178
179 CONSTRUCT where_clause on customer.* FROM customer_num,
180 fname, lname, company, address1, address2, city, state,
181 zipcode, phone
182
183 IF int_flag THEN

(customer.4gl:query_data)

$run
Stopped in query_data at line 179 in module "customer.4gl"
$

Introduction to the Debugger 1-7

The Debugger Screens
The Source Window

The Debugger uses two separate portions of the Debugger screen, or windows,
for its activities. The top, or Source, window is used for displaying source
code. When execution is suspended, the Source window displays the
currently executing program segment. A highlighting bar indicates the next
segment to execute when you resume execution.

The source module can be scrolled through this window, using certain CTRL

keys or the UP ARROW and DOWN ARROW keys. For example, you can scroll
through the program until the MAIN section is displayed, as in Figure 1-3.

Figure 1-3
Scrolling the Source Module

10
11 MAIN
12
13 DEFER INTERRUPT
14
15 OPEN FORM cust_form FROM "customer"
16
17 DISPLAY FORM cust_form
18

(customer.4gl:main)

$run
Stopped in query_data at line 179 in module "customer.4gl"
$view
1-8 Guide to the IBM Informix 4GL Interactive Debugger

The Debugger Screens
The Command Window

The bottom, or Command, window is used for entering Debugger
commands. Output from these commands is also displayed here. When you
first access the Debugger, or when you suspend execution of a program, the
cursor appears at the $ prompt in this window, and the Debugger awaits
input.

For example, if you enter a FUNCTIONS command, the Debugger lists all the
programmer-defined functions in the program in the Command window, as
shown in Figure 1-4. You can scroll the contents of the Command window
using the same keys that you use to scroll the Source window.

Figure 1-4
Output of the FUNCTIONS Command to the Command Window

The Debugger provides a number of parameters that allow you to easily
control the interaction of the Debugger and Application screens. For
example, you can tell the Debugger to highlight each statement in the Source
window as it executes. You can also specify whether the Application screen
should appear whenever your program produces output, or only when it
requires input.

10
11 MAIN
12
13 DEFER INTERRUPT
14
15 OPEN FORM cust_form FROM "customer"
16
17 DISPLAY FORM cust_form
18

(customer.4gl:main)

Stopped in query_data at line 179 in module "customer.4gl"
$view
$functions
change_data
delete_row
enter_row
main
query_data
show_menu
$

Introduction to the Debugger 1-9

Tracepoints
On a single terminal, you can view either the Application screen or the
Debugger screen at one time. If you have two terminals that use the same
termcap or terminfo entry, you can use a separate terminal for each screen.
(This feature is discussed in greater detail in Chapter 8, “The Debugging
Environment,” and Chapter 9, “The Debugger Commands.”)

Tracepoints
By setting tracepoints, you can monitor when a particular function or
statement executes, or when the value of a variable changes. Tracepoints are
useful tools for tracing the flow of control of an unfamiliar program. They are
also a valuable debugging device if, for example, you suspect that a function
is not returning the correct values.

The example in Figure 1-5 illustrates the output of a tracepoint that has been
set to monitor the execution of the get_stock function in the cust_order
program introduced in Chapter 5, “A Multi-Module Program: cust_order.”
This tracepoint was set with the following Debugger command:

trace get_stock

Figure 1-5
Output of a Tracepoint in the cust_order Program

21 CLEAR FORM
22 ERROR "Order input aborted" ATTRIBUTE (RED, REVERSE)
23 RETURN
24 END IF
25 INPUT ARRAY p_items FROM s_items.*
26 BEFORE FIELD stock_num
27 MESSAGE "Press ESC to write order"
28 DISPLAY "Enter a stock number or press CTRL-B to

scan stock list"

(order.4gl:add_order)

$trace get_stock
(1) trace in function get_stock [order.4gl]

scope function: get_stock
$run
Enter get_stock() from add_order line 45
Return (2, "HRO", "baseball ", $126.00) from get_stock at line 195
1-10 Guide to the IBM Informix 4GL Interactive Debugger

Breakpoints
The tracepoint outputs the line number where the call to get_stock was
made, along with the name of the calling function. When get_stock ends, the
tracepoint outputs the line number at which execution terminated. It also
displays the values that get_stock returns to the calling function.

Breakpoints
Breakpoints allow you to suspend program execution when a preset
condition occurs. These conditions include when a particular statement or
function executes, or when the value of a variable changes. You can also
specify an IF condition.

While execution is suspended, you can perform activities such as viewing the
current values of variables, or listing the functions that were called to arrive
at the current statement. You can change the value of a variable, and resume
execution with the new value. You can set breakpoints at program segments
that you want to examine in detail, and execute your program one statement
at a time after the breakpoint is reached.

Program execution does not resume following a breakpoint until you issue a
specific Debugger command to do so.

In Figure 1-6 on page 1-12, a breakpoint causes execution to be suspended in
the cust_order program if the value of the global record member
p_customer.customer_num is 107. This breakpoint was set with the
following Debugger command:

break IF p_customer.customer_num = 107
Introduction to the Debugger 1-11

Resuming Execution of a Program
Figure 1-6
Output of a Breakpoint in the cust_order Program

Resuming Execution of a Program
An indispensable feature of a debugger is the ability to resume operation of
a program from a point of interruption. Interruption might have occurred
because a breakpoint was reached, or because you pressed the Interrupt key
(typically CTRL-C).

The CONTINUE command resumes execution of the program from the point
of interruption. When you use CONTINUE, there is no further interruption of
the program unless a breakpoint is reached, or another Interrupt is entered.
For example, if you interrupted the customer program during execution of
the CONSTRUCT statement, as shown in Figure 1-1 on page 1-6, you can now
use the CONTINUE command to resume operation. The Application screen
reappears with the query still in progress, as shown in Figure 1-7.

83 DECLARE customer_set SCROLL CURSOR FOR statement_1
84
85 OPEN customer_set
86 FETCH FIRST customer_set INTO p_customer.*
87 IF status = NOTFOUND THEN
88 LET exist = FALSE
89 ELSE
90 LET exist = TRUE
91 DISPLAY BY NAME p_customer.* ATTRIBUTE(MAGENTA)

(main.4gl:query_customer)

$break if p_customer.customer_num = 107
(1) break

if: p_customer.customer_num = 107
$run
Stopped in query_customer at line 87 in module "main.4gl"
$

1-12 Guide to the IBM Informix 4GL Interactive Debugger

Resuming Execution of a Program
Figure 1-7
Resuming Execution with CONTINUE

As an alternative to the CONTINUE command, you can use the STEP
command to execute your statements individually, or by as many lines as you
choose. Stepping through 4GL statements is an excellent way to familiarize
yourself with the flow of control of unfamiliar programs. When you use the
STEP command, the Debugger highlights the next statement to execute in the
Source window. It displays in the Command window the line number and
function of the statement just executed.

CUSTOMER: Add Query Modify Delete Exit
Search for a customer.
- -

CUSTOMER FORM

Number: [105|]

First Name: [] Last Name: []

Company: []

Address: []
[]

City: []

State: [] Zipcode: []

Telephone: []
- -
Introduction to the Debugger 1-13

Viewing the Values of Program Variables
In Figure 1-8, the STEP command executes the next statement in the
cust_order program following a breakpoint.

Figure 1-8
Stepping Through Statements

Viewing the Values of Program Variables
The Debugger provides two simple and convenient commands for viewing
the values of program variables. Without the Debugger, it would be
necessary to place individual DISPLAY statements in your code to monitor the
values of variables.

The DUMP command allows you to display the values of local, global, and
module variables in the currently executing function. If you specify the
GLOBALS option, the DUMP command lists the values of all programmer-
defined global or module variables as well as the values of the 4GL global
variables such as status and the members of the SQLCA record.

83 DECLARE customer_set SCROLL CURSOR FOR statement_1
84
85 OPEN customer_set
86 FETCH FIRST customer_set INTO p_customer.*
87 IF status = NOTFOUND THEN
88 LET exist = FALSE
89 ELSE
90 LET exist = TRUE
91 DISPLAY BY NAME p_customer.* ATTRIBUTE(MAGENTA)

(main.4gl:query_customer)

$break if p_customer.customer_num = 107
(1) break

if: p_customer.customer_num = 107
$run
Stopped in query_customer at line 87 in module "main.4gl"
$step
Stopped in query_customer at line 90 in module "main.4gl"
$

1-14 Guide to the IBM Informix 4GL Interactive Debugger

Viewing the Values of Program Variables
Figure 1-9 illustrates the use of the DUMP command to display the current
values of all local variables during execution of the renum_items function in
the cust_order program.

Figure 1-9
The DUMP Command

The PRINT command allows you to display the value of an individual
variable in an active function. With this single command, you can print the
value of a simple variable, the values of all the members of a program record,
or the values of all the elements of a program array. The following two
examples illustrate sample output of the PRINT command with examples
from the customer program. In Figure 1-10 on page 1-16, the PRINT
command displays the value of the character string sql_stmt in the
Command window.

147
148 FUNCTION renum_items()
149 DEFINE pa_curr, pa_total, sc_curr, sc_total, k INTEGER
150
151 LET pa_curr = arr_curr()
152 LET pa_total = arr_count()
153 LET sc_curr = scr_line()
154 LET sc_total = 4
155 FOR k = pa_curr TO pa_total

(order.4gl:renum_items)

Stopped in renum_items at line 155 in module "order.4gl"
$dump
DUMPING LOCAL VARIABLES OF FUNCTION [renum_items]

pa_curr = 3
pa_total = 3
sc_curr = 3
sc_total = 4
k = 0

$

Introduction to the Debugger 1-15

Viewing the Values of Program Variables
Figure 1-10
Printing the Value of a Variable

In the next example, the PRINT command has been used to save the values of
the members of the p_customer program record in a file. The name of the file
is print1, and the values assigned to the record are those of Frank Albertson.
The following command produced this file:

print p_customer >> print1
global:p_customer = record

customer_num = 114
fname = "Frank "
lname = "Albertson "
company = "Sporting Place "
address1 = "947 Waverly Place "
address2 = (null)
city = "Redwood City "
state = "CA"
zipcode = "94062"
phone = "415-886-6677 "

end record

You can use both the DUMP and PRINT commands to display the values of
variables automatically as tracepoints and breakpoints execute.

202 LET exist = TRUE
203
204 DISPLAY BY NAME p_customer.*
205
206 PROMPT "Enter ’y’ to select this customer ",
207 "or RETURN to view next customer: "
208 FOR CHAR answer
209
210 IF answer = "y" THEN

(customer.4gl:query_data)

$run
Stopped in query_data at line 206 in module "customer.4gl"
$print sql_stmt
customer.4gl:query_data.sql_stmt = "SELECT * FROM customer where

customer.lname matches "*son"

"
$

1-16 Guide to the IBM Informix 4GL Interactive Debugger

Analyzing Fatal Errors
Analyzing Fatal Errors
The Debugger makes the task of diagnosing fatal errors much easier by
allowing you to work with your program even after it has aborted. For
example, you can list the functions that were called leading up to the
statement that caused the program to terminate abnormally. You can also
print the values of the program variables at the time execution terminated.

When a fatal error occurs, the Debugger immediately redisplays the Source
and Command windows. The Source window highlights the statement at
which execution terminated. The Command window tells you where in the
program the error occurred, and displays the error number and message.
Figure 1-11 illustrates the appearance of the Debugger screen after a fatal
error has occurred in the cust_order program.

Figure 1-11
Encountering a Fatal Error

Following a fatal error, you can rerun the program from within the Debugger.
In many instances, you can go right to the program segments you want to
examine by recalling a specific function. If the function you want to call
requires an active database, you can use the DATABASE command to reopen
the database for this purpose.

27 FUNCTION mess(str, mrow)
28 DEFINE str CHAR(80),
29 mrow SMALLINT
30
31 DISPLAY " ", str CLIPPED AT mrow,1
32 SLEEP 3
33 DISPLAY "" AT mrow,1
34 END FUNCTION
35

(main.4gl:mess)

$run
Fatal error in mess at line 31 in module "main.4gl"
-1135: The row or column number in DISPLAY AT exceeds the limits

of your terminal

$

Introduction to the Debugger 1-17

Short Forms of Commands
Short Forms of Commands
For ease of entry, you can enter a Debugger command using the fewest
number of characters that uniquely identify it. For example, you can enter the
DUMP command as du.

You do not need to memorize the unique abbreviation for each Debugger
command, and you can always enter additional characters. If you enter a
sequence of characters that identify more than one command, the Debugger
prompts you with the available choices.

For example, if you enter r, which can identify either the RUN or READ
command, the Debugger responds as shown in Figure 1-12.

Figure 1-12
Short Forms of Commands

11 MAIN
12
13 DEFER INTERRUPT
14
15 OPEN FORM cust_form FROM "customer"
16
17 DISPLAY FORM cust_form
18
19 LET chosen = FALSE

(customer.4gl:main)

$r
r is not a unique abbreviation.
Choices are: read, run
$

1-18 Guide to the IBM Informix 4GL Interactive Debugger

Function Keys
Function Keys
The most common Debugger commands have corresponding function keys
F1 through F9. These keys are:

alias f1 = help
alias f2 = step
alias f3 = step into
alias f4 = continue
alias f5 = run
alias f6 = list break trace
alias f7 = list
alias f8 = dump
alias f9 = exit

Actions that you have assigned to function keys in your 4GL program (or
used terminal setup to define) override the actions assigned to those keys by
the Debugger while the application program is running. If desired, you can
redefine the Debugger function keys to specify any other command or
command sequence. (This feature is discussed in detail in Chapter 9.)

Requesting Help
Help on all the Debugger commands is always available. You can enter the
HELP command, or press F1, to see the list of valid commands shown in
Figure 1-13 on page 1-20.
Introduction to the Debugger 1-19

Requesting Help
Figure 1-13
Requesting Help

You can choose a command from this list by highlighting it and pressing
RETURN. For example, if you choose the VARIABLE keyword, the screen
shown in Figure 1-14 appears.

CHOOSE COMMAND TO DETAIL>>
Choose a command with Arrow keys, or enter a name, then press Return.

_escape call grow step

_interrupt cleanup help timedelay

_redraw continue let trace

_screen database list turn

_search disable nobreak use

_toggle dump notrace variable

alias enable print view

application exit read where

break functions run write
1-20 Guide to the IBM Informix 4GL Interactive Debugger

Requesting Help
Figure 1-14
The HELP Screen for the VARIABLE Command

You can also request help on a particular Debugger command directly at the
$ prompt. For example, the following command also displays the Help screen
for the VARIABLE command:

help variable

The Debugger provides tools that are useful to 4GL programmers of every
level of proficiency. If you are just starting to program with 4GL, you will find
that the Debugger commands can be used to gain valuable insights into the
workings of your programs and of the 4GL language. If you are an experi-
enced programmer, you will find that the options provided for the basic
commands are comprehensive enough to handle virtually any debugging
task. Whatever your reasons for using a debugger, you will find that the
Debugger is an invaluable companion to 4GL.

HELP: SCREEN RESUME
Displays the next page of Help text.

VARIABLE

Overview

Use VARIABLE to display the declaration of a program variable, or
to save it in a file.

Syntax

--
VARIABLE [variable | GLOBALS | ALL] [>>filename]
--

Explanation

VARIABLE is a required keyword.

variable is the name of a program variable.

GLOBALS is an optional keyword.
Introduction to the Debugger 1-21

2
Chapter
Getting Started with the
Debugger
In This Chapter . 2-3

The customer.4gl Program 2-4
Compiling the Form and Program 2-10

Operating the Debugger 2-11
Viewing the Source Window 2-12

The VIEW Command 2-12
Returning to the Command Window 2-13
Viewing a Specific Function 2-13
Scrolling the Source Window. 2-14
Searching for Patterns of Characters 2-15
Using Wildcards 2-16

Working with the Command Window 2-17
The LIST Command 2-17
Scrolling the Command Window 2-18
Searching in the Command Window 2-18
Executing Operating System Commands 2-19

Starting the Debugger 2-20
The Application Screen. 2-21

The Terminal Display State 2-23
SOURCETRACE 2-23
Running with SOURCETRACE 2-24

Restoring the Environment 2-29
Saving the Environment. 2-29

The WRITE Command 2-30
The customer.4db File 2-31
Exiting from the Session 2-33

2-2 Guid
e to the IBM Informix 4GL Interactive Debugger

In This Chapter
This chapter introduces the debugging environment. It shows you how to
operate the INFORMIX-4GL Interactive Debugger and manipulate the
Debugger screens using a single module program, customer.4gl. This and
subsequent chapters assume that you are familiar with basic INFORMIX-4GL
statement syntax, including the INPUT and CONSTRUCT statements, and
with the SQL commands to INSERT, UPDATE, and DELETE database rows. The
following topics are covered:

■ How to access the Debugger

■ How to manipulate the Source and Command windows

■ How to use the LIST command to display the current debugging
environment

■ How to run the Debugger

■ How to save the current debugging environment in a file

■ How to exit from the Debugger

The examples in this chapter are based on the following program, form, and
help files provided with the demonstration database:

customer.4gl
customer.per
custhelp.ex

For information about creating the demonstration database, see “Debugger
Demonstration Database and Examples” on page 7.

To run the Debugger, your operating environment must be properly
configured. Appendix A explains the environment variables that control the
environment, including the DBSRC environment variable, which is recog-
nized by the Debugger but not by 4GL. This variable can be used to augment
your directory search path during a debugging session. You do not, however,
need to specify DBSRC in order to use the Debugger.
Getting Started with the Debugger 2-3

The customer.4gl Program
The customer.4gl Program
The customer.4gl program is a single module program that allows the user
to carry out the following activities:

■ Add customer rows

■ Query the customer table

■ Modify a customer row returned by the query function

■ Delete a customer row returned by the query function

A complete discussion of the customer.4gl program is provided in
Appendix C, “Sample Programs.” You should consult Appendix C if you
would like more information on the program after studying the example.

An intentional bug has been coded into the program that produces
undesirable results under certain conditions. In Chapter 3, “Tracing Logic of
the customer Program,” you use the Debugger to trace the logic of the
customer program, and the way in which the values of program variables are
shared among the various functions. Chapter 4, “Analyzing a Logical Error
in the customer Program,” illustrates the use of the Debugger to discover the
logical error, and provides instructions for correcting the program.

A listing of the program and brief explanatory notes follow:

1DATABASE stores7
2
3GLOBALS
4
5 DEFINE
6 p_customer RECORD LIKE customer.*,
7 chosen SMALLINT
8
9END GLOBALS
10
11MAIN
12
13 DEFER INTERRUPT
14
15 OPEN FORM cust_form FROM "customer"
16
17 DISPLAY FORM cust_form
18
19 LET chosen = FALSE
20
21 OPTIONS MESSAGE LINE 22,
22 PROMPT LINE 21,
23 HELP FILE "custhelp.ex",
24 HELP KEY CONTROL-I
2-4 Guide to the IBM Informix 4GL Interactive Debugger

The customer.4gl Program
25
26 CALL show_menu()
27
28 MESSAGE "End program."
29
30 SLEEP 3
31
32 CLEAR SCREEN
33
34END MAIN
35
36
37FUNCTION show_menu()
38
39 DEFINE answer CHAR(1)
40
41 MESSAGE "Type the first letter of the option ",
42 "you want to select or CONTROL I for Help."
43
44 MENU "CUSTOMER"
45
46 COMMAND "Add" "Add a new customer." HELP 1
47
48 LET answer = "y"
49
50 WHILE answer = "y"
51
52 CALL enter_row()
53
54 PROMPT "Do you want to ",
55 "enter another row (y/n) ? "
56 FOR CHAR answer
57
58 END WHILE
59
60 CLEAR FORM
61
62 COMMAND "Query" "Search for a customer." HELP 2
63
64 CALL query_data()
65
66 IF chosen THEN
67
68 NEXT OPTION "Modify"
69
70 END IF
71
72 COMMAND "Modify" "Modify a customer." HELP 3
73
74 IF chosen THEN
75
76 CALL change_data()
77
78 ELSE
79
80 MESSAGE "No customer has been chosen. ",
81 "Use the Query option to select ",
82 "a customer."
83
84 NEXT OPTION "Query"
85
Getting Started with the Debugger 2-5

The customer.4gl Program
86 END IF
87
88
89 COMMAND "Delete" "Delete a customer." HELP 4
90
91 IF chosen THEN
92
93 PROMPT "Are you sure you want to ",
94 "delete this customer (y/n)? "
95 FOR CHAR answer
96
97 IF answer = "y" THEN
98
99 CALL delete_row()
100
101 END IF
102
103 ELSE
104
105 MESSAGE "No customer has been chosen. ",
106 "Use the Query option to select ",
107 "a customer."
108
109 NEXT OPTION "Query"
110
111 END IF
112
113
114 COMMAND "Exit" "Leave the CUSTOMER menu." HELP 5
115
116 EXIT MENU
117
118 END MENU
119
120END FUNCTION
121
122
123FUNCTION enter_row()
124
125 LET int_flag = 0
126
127 MESSAGE ""
128
129 CLEAR FORM
130
131 INPUT p_customer.fname THRU p_customer.phone
132 FROM sc_cust.*
133
134 IF int_flag THEN
135 LET int_flag = FALSE
136 ERROR "Customer entry aborted."
137 RETURN
138 END IF
139
140 LET p_customer.customer_num = 0
141
142 INSERT INTO customer VALUES (p_customer.*)
143
144 LET p_customer.customer_num = SQLCA.SQLERRD[2]
145
146 DISPLAY p_customer.customer_num TO customer_num
2-6 Guide to the IBM Informix 4GL Interactive Debugger

The customer.4gl Program
147
148 MESSAGE "Row added."
149
150 SLEEP 3
151
152 MESSAGE ""
153
154END FUNCTION
155
156
157
158FUNCTION query_data()
159
160 DEFINE
161 where_clause CHAR(200),
162 sql_stmt CHAR(250),
163 answer CHAR(1),
164 exist SMALLINT
165
166 LET int_flag = 0
167
168 MESSAGE ""
169
170 CLEAR FORM
171
172
173 MESSAGE "Enter search criteria and press ESC."
174
175 SLEEP 3
176
177 MESSAGE ""
178
179 CONSTRUCT where_clause on customer.* FROM customer_num,
180 fname, lname, company, address1, address2, city, state,
181 zipcode, phone
182
183 IF int_flag THEN
184 LET int_flag = FALSE
185 ERROR "Customer query aborted"
186 RETURN
187 END IF
188

189 LET sql_stmt = "SELECT * FROM customer where ",
190 where_clause clipped
191
192 PREPARE ex_sel FROM sql_stmt
193
194 DECLARE q_curs CURSOR FOR ex_sel
195
196 LET exist = FALSE
197
198 LET chosen = FALSE
199
200 FOREACH q_curs INTO p_customer.*
201
202 LET exist = TRUE
203
204 DISPLAY BY NAME p_customer.*
205
206 PROMPT "Enter ’y’ to select this customer ",
Getting Started with the Debugger 2-7

The customer.4gl Program
207 "or RETURN to view next customer: "
208 FOR CHAR answer
209
210 IF answer = "y" THEN
211
212 LET chosen = TRUE
213
214 EXIT FOREACH
215
216 END IF
217
218 END FOREACH
219
220 IF exist = FALSE THEN
221
222 MESSAGE "No customer rows found."
223
224 SLEEP 3
225
226 MESSAGE ""
227
228 ELSE
229
230 IF chosen = FALSE THEN
231
232 MESSAGE "There are no more customer rows."
233
234 SLEEP 3
235
236 MESSAGE ""
237
238 CLEAR FORM
239

240 END IF
241
242 END IF
243
244END FUNCTION
245
246
247FUNCTION change_data()
248
249 LET int_flag = 0
250
251 INPUT p_customer.fname THRU p_customer.phone
252 WITHOUT DEFAULTS FROM sc_cust.*
253
254 IF int_flag THEN
255 LET int_flag = FALSE
256 ERROR "Customer update aborted."
257 RETURN
258 END IF
259
260 UPDATE customer
261 SET customer.* = p_customer.*
262 WHERE customer_num = p_customer.customer_num
263
264 MESSAGE "Row updated."
265
266 SLEEP 3
2-8 Guide to the IBM Informix 4GL Interactive Debugger

The customer.4gl Program
267
268 MESSAGE ""
269
270END FUNCTION
271
272
273FUNCTION delete_row()
274
275 LET int_flag = 0
276
277 DELETE FROM customer WHERE customer_num =
278 p_customer.customer_num
279
280 CLEAR FORM
281
282 MESSAGE "Row deleted."
283
284 SLEEP 3
285
286 MESSAGE ""
287
288END FUNCTION

The following notes pertain to this example:

■ The GLOBALS section defines the global record p_customer with
variables corresponding to the columns of the customer table. It also
defines a flag called chosen that indicates whether the user has
selected a customer.

■ The MAIN section issues the DEFER INTERRUPT command, opens
and displays the customer form, and calls the show_menu function.

■ The show_menu function displays the program menu with Add,
Query, Modify, and Delete options and calls the functions to carry
out the actions described by these options.

■ The enter_row function assigns values to the variables of the
p_customer record from the data entered by the user onto the screen
form. It assigns a value of zero to the p_customer.customer_num
variable and inserts the new row into the customer table.

■ The query_data function uses the CONSTRUCT statement to perform
a query by example, declares the cursor q_curs, and retrieves rows
into the p_customer program record by means of a FOREACH loop.
The user can select a row for updating or deleting.

■ The change_data function allows the user to update a customer row
returned by the query_data function and previously selected.

■ The delete_row function allows the user to delete a customer row
returned by the query_data function and previously selected.
Getting Started with the Debugger 2-9

Compiling the Form and Program
Compiling the Form and Program
In order to debug an 4GL program, you must first compile the program and
any forms that it displays.

To compile the screen form from the Programmer’s Environment

1. Enter r4gl at the system prompt to access the INFORMIX-4GL menu.

2. Choose the Form option from the INFORMIX-4GL menu.

3. Choose the Compile option from the FORM menu.

4. Select the customer form.

You see the message:
Form compilation in progress...please wait while the
form compiles.

5. Choose the Exit option to return to the INFORMIX-4GL menu.

To compile the program from the Programmer’s Environment

1. Enter r4gl at the system prompt to access the INFORMIX-4GL menu.

2. Choose the Module option from the INFORMIX-4GL menu.

3. Choose the Compile option from the MODULE menu.

4. Select the customer program.

5. Choose the Runable option from the COMPILE MODULE menu.

You see the message
Compilation in progress... please wait while the
program compiles.
2-10 Guide to the IBM Informix 4GL Interactive Debugger

Operating the Debugger
Operating the Debugger
Once the program is compiled, you are ready to access the Debugger.

To initiate the debugging session from the Programmer’s Environment

1. Choose the Debug option from the MODULE menu.

2. Choose the customer program.

After a few seconds, the Source and Command windows appear on
the terminal screen, as shown in Figure 2-1

Figure 2-1
The Debugger Screen

11 MAIN
12
13 DEFER INTERRUPT
14
15 OPEN FORM cust_form FROM "customer"
16
17 DISPLAY FORM cust_form
18
19 LET chosen = FALSE

(customer.4gl:main)

$

Getting Started with the Debugger 2-11

Viewing the Source Window
Viewing the Source Window
On a standard terminal screen, the first nine lines of the MAIN section appear
in the Source window, followed by the name of the module and current
function. The Debugger always displays the MAIN block when you initiate a
session, even if it is preceded in the module by a DATABASE or GLOBALS
statement. The cursor is in the Command window, which is ready to accept
input.

The VIEW Command

You use the VIEW command to move the cursor to the Source window and
examine the source module. VIEW is the only command that allows you to
move the cursor from the Command window to the Source window.

Figure 2-2
The VIEW Command

You can enter any Debugger command using the smallest number of
characters that uniquely identify it. For example, you can enter view as vi.

11 MAIN
12
13 DEFER INTERRUPT
14
15 OPEN FORM cust_form FROM "customer"
16
17 DISPLAY FORM cust_form
18
19 LET chosen = FALSE

(customer.4gl:main)

$view
2-12 Guide to the IBM Informix 4GL Interactive Debugger

Viewing the Source Window
The examples and screens in this manual identify Debugger commands by
their full names for ease of reference. You can, however, use the abbreviated
forms to save keystrokes. “Short Forms of Keywords” on page 9-24 lists all of
the shortest unique forms of the Debugger commands. Help is available by
typing help or help command.

Returning to the Command Window

You can use the Interrupt key (usually DEL or CTRL-C) to return the cursor to
the Command window.

In addition to using the Interrupt key, you can use any alphabetic key or
sequence of alphabetic keys to return to the Command window, which saves
you keystrokes because you can enter Debugger commands while the cursor
is still in the Source window. For example, typing RUN and pressing RETURN

while the cursor is in the Source window both returns the cursor to the
Command window and executes the RUN command.

This feature is controlled by the EXITSOURCE terminal display parameter. If
you change the value of EXITSOURCE from ON to OFF, the Interrupt key is the
only key that returns the cursor to the Command window. See Chapter 8,
“The Debugging Environment,” for more information on using EXITSOURCE.

Viewing a Specific Function

You can view a specific function by following the VIEW command with the
function name. For example:

VIEW query_data

The Source window scrolls to display the function you have indicated, as
shown in Figure 2-3 on page 2-14. Do not follow the function name with
parentheses or an argument list.
Getting Started with the Debugger 2-13

Viewing the Source Window
Figure 2-3
Viewing a Specific Function

Scrolling the Source Window

When you enter the VIEW command, the cursor moves to the first line of the
Source window. To scroll through this window you can use the UP ARROW and
DOWN ARROW keys, or the following CTRL keys.

As you scroll, the last line of the Source window changes when necessary to
reflect the function currently displayed.

Control Key Description

CTRL-K Moves the cursor up one line

CTRL-J Moves the cursor down one line

CTRL-B Moves the cursor up one window

CTRL-F Moves the cursor down one window

CTRL-U Moves the cursor up one-half window

CTRL-D Moves the cursor down one-half window

158 FUNCTION query_data()
159
160 DEFINE
161 where_clause CHAR(200),
162 sql_stmt CHAR(250),
163 answer CHAR(1),
164 exist SMALLINT
165
166 LET int_flag = 0

(customer.4gl:query_data)

$view
$view query_data
2-14 Guide to the IBM Informix 4GL Interactive Debugger

Viewing the Source Window
You can move to a specific line of the source module by typing the line
number and pressing RETURN. Typing $ in the Source window moves the
cursor to the last line of the source module.

Searching for Patterns of Characters

The following keys are used to search the Source window for a particular
pattern of characters.

For example, you can enter /q_curs to search forward in the source module
for the first occurrence of the string q_curs.

Figure 2-4
Searching for a Pattern in the Source Window

Pressing RETURN moves the cursor to the next occurrence of the string in the
direction indicated.

Search Character Description

/ Searches forward from the current position

? Searches backward from the current position

158 FUNCTION query_data()
159
160 DEFINE
161 where_clause CHAR(200),
162 sql_stmt CHAR(250),
163 answer CHAR(1),
164 exist SMALLINT
165
166 LET int_flag = 0

/q_curs

$view
$view query_data
Getting Started with the Debugger 2-15

Viewing the Source Window
Using Wildcards

Within a search string, you can use the following wildcards to search for a
partial match.

For example, the following entry causes the Debugger to search forward in
the Source module for any pattern bounded by the capital letters C and D:

/C*D

This search pattern finds RECORD, COMMAND, and SQLCA.SQLERRD[2].

The next entry causes the Debugger to search backward in the source module
for a pattern beginning with a lowercase letter in the range c-f and ending
with the characters _row:

?[c-f]*_row

This search pattern finds delete_row() and enter_row().

To search for a string using wildcards

1. Use the keys described in this section to scroll and search through the
Source window.

2. Press the Interrupt key when you are finished to return to the
Command window.

Wildcard Character Description

* Matches any subset of a string

? Matches any single character

[x-y] Matches any character between x and y in the ASCII collating
sequence
2-16 Guide to the IBM Informix 4GL Interactive Debugger

Working with the Command Window
Working with the Command Window
In the Command window, you enter commands at the $ prompt, and then
press RETURN. On a standard terminal, the Command window can display 10
lines at once, and the information in the window scrolls upward automati-
cally when the window is filled. Output from your commands and error
messages are also displayed in this window. The 50 most recent command
lines remain in a buffer, and you can examine them with many of the same
tools you use to manipulate the Source window. In this section, you use the
LIST command to generate output to the Command window, and learn the
similarities and differences in working with the two windows.

The LIST Command

When you first set up a debugging session with the customer program, the
Command window is empty. You can use the LIST command to display the
following features of the debugging environment:

■ The terminal display state

■ Tracepoints

■ Breakpoints

If you do not specify any options, the LIST command displays all current
debugging parameters.

The following example shows the output of the LIST command:

autotoggle on
displaystops on
sourcetrace off
exitsource on
printdelay off
timedelay source 1
timedelay command 0
source lines 9
command lines 10

Listed first are the default values for the five terminal display parameters
AUTOTOGGLE, DISPLAYSTOPS, SOURCETRACE, EXITSOURCE, and
PRINTDELAY. The activity of the TIMEDELAY command can affect either the
Source or Command window, and the LIST command displays the values for
both. Listed next are the default sizes of the Source and Command windows.
There are presently no tracepoints or breakpoints.
Getting Started with the Debugger 2-17

Working with the Command Window
In this chapter, you learn how to use the SOURCETRACE parameter to
monitor program statements as they execute, and how to use the TIMEDELAY
command with the SOURCE option to control the speed at which
SOURCETRACE executes. Chapter 6 illustrates the use of the AUTOTOGGLE
parameter. A complete description of all the parameters and commands is
provided in Chapter 8.

Scrolling the Command Window

You can scroll the lines in the command buffer using either the UP ARROW or
DOWN ARROW key, or the same six CTRL keys used for scrolling the Source
window. See “Scrolling the Source Window” on page 2-14 for a summary of
these CTRL keys.

You can move forward a specific number of lines by typing the number and
pressing RETURN. (In contrast, typing a number and pressing RETURN in the
Source window moves the cursor to the line indicated.)

Searching in the Command Window

As in the Source window, you can use the forward slash (/) and the question
mark (?) to search for a pattern of characters within the Command window.
When you enter the forward slash in the Command window, the Debugger
searches forward in the command buffer rather than from the current $
prompt. Pressing RETURN takes you to the next line of the buffer rather than
to the next occurrence of the search pattern.

You can use the same wildcards to locate a partial match in the Command
window as you can in the Source window. See “Using Wildcards” on
page 2-16 for a summary of these wildcards.
2-18 Guide to the IBM Informix 4GL Interactive Debugger

Working with the Command Window
Executing Operating System Commands

You can execute operating system commands from either the Source window
or the Command window by preceding them with the exclamation point (!).
For example, enter !ls at the $ prompt to display the files in the current
directory.

Figure 2-5
The Command Window

To work with the Command window

1. Use the keys described in this section to scroll and search through the
Command window.

2. Press any key when prompted to return to the Command window.

15 OPEN FORM cust_form FROM "customer"
16
17 DISPLAY FORM cust_form
18
19 LET chosen = FALSE

(customer.4gl:main)

$!ls

customer.4gi customer.frm my.4gl stores.dbs
customer.4gl customer.per my.4db syspgm4gl.dbs
customer.4go customer.unl my.4go tmp.4db

PRESS ANY KEY TO CONTINUE
Getting Started with the Debugger 2-19

Starting the Debugger
Starting the Debugger
You start operation of the Debugger by entering the RUN command or by
pressing F5. Running a 4GL program with all terminal display parameters in
their default states, and with no tracepoints or breakpoints set, is very similar
to running the program outside the Debugger.

Figure 2-6
Starting the Debugger

11 MAIN
12
13 DEFER INTERRUPT
14
15 OPEN FORM cust_form FROM "customer"
16
17 DISPLAY FORM cust_form
18
19 LET chosen = FALSE

(customer.4gl:main)

$run
2-20 Guide to the IBM Informix 4GL Interactive Debugger

Starting the Debugger
The Application Screen

As soon as you enter the RUN command, program execution begins. The
Debugger switches immediately to the Application screen as the program
displays the form and the menu, as shown in Figure 2-7.

Figure 2-7
The Application Screen with the customer Program

You can choose any of the options presented and work with the program
exactly as if it were executing outside the Debugger.

CUSTOMER: Add Query Modify Delete Exit
Add a new customer.
- -

CUSTOMER FORM

Number: []

First Name: [] Last Name: []

Company: []

Address: []
[]

City: []

State: [] Zipcode: []

Telephone: []
- -

Type the first letter of the option you want to select or CONTROL I for Help.
Getting Started with the Debugger 2-21

Starting the Debugger
Selecting the Exit option terminates execution of the program but does not
stop operation of the Debugger. The Source and Command windows
reappear on the terminal screen, as shown in Figure 2-8.

Figure 2-8
Terminating the Program

The Source window highlights the statement at which execution terminates
and displays the block of code in which this statement appears. In the current
example, the final statements of the MAIN section execute following the
return from the show_menu function.

The Command window displays the name of the function and the line
number at which program execution terminated. The cursor appears on the
following line. You can rerun the program at this point or enter any other
valid Debugger command.

30 SLEEP 3
31
32 CLEAR SCREEN
33
34 END MAIN
35
36
37 FUNCTION show_menu()
38

(customer.4gl:main)

$run
Program exited in main at line 34 in module "customer.4gl"
$

2-22 Guide to the IBM Informix 4GL Interactive Debugger

The Terminal Display State
The Terminal Display State
The Debugger provides five terminal display parameters that allow you to
control the interaction of the Debugger windows and of the Debugger and
Application screens. Refer to “The LIST Command” on page 2-17 for a listing
of the parameters with their default values. You use the TURN ON and TURN
OFF commands to alter the values of these parameters. Following is a
description of the SOURCETRACE parameter. The TIMEDELAY command
with the SOURCE option is also described because it affects the execution of
SOURCETRACE. Chapter 8 provides a complete description of all the
parameters and commands that determine the terminal display state.

SOURCETRACE

The default value for SOURCETRACE is OFF. If SOURCETRACE is turned on,
the Debugger highlights each line of code as it executes, and modifies the
contents of the Source window accordingly. There is consequently more
interaction between the Debugger and Application screens. The Source and
Command windows remain on the terminal screen when you begin program
execution, and the Debugger switches to the Application screen only when
the program requires input from the user.

Turning on SOURCETRACE increases the time required for a debugging
session. It can be very useful, however, when you are first becoming familiar
with a program or when you are working with a program that is relatively
small. Alternatively, it can be turned on for those sections of a program that
require particular attention and turned off otherwise.

TIMEDELAY SOURCE

The TIMEDELAY command with the SOURCE option controls the speed with
which SOURCETRACE executes. TIMEDELAY is similar to the 4GL SLEEP
command. The default value for TIMEDELAY SOURCE is 1. If you would like
to highlight each line of source code for an additional second, you can enter
the TIMEDELAY command as follows:

timedelay source 2
Getting Started with the Debugger 2-23

The Terminal Display State
Running with SOURCETRACE

To observe the operation of the Debugger with the SOURCETRACE parameter
set to ON, enter the command:

turn on sourcetrace

and then enter run to restart the customer program.

When operation begins, the Debugger windows remain on the terminal
screen. A highlighting bar moves through the Source window line by line,
beginning with the first executable statement in the MAIN block. This
statement is line 13:

13 DEFER INTERRUPT

The Source window scrolls upward as necessary to display the currently
executing statement.

Important: The following statements in a 4GL program are not executable and are
not highlighted by SOURCETRACE: DEFINE, MAIN, FUNCTION declarations,
GLOBALS, LABEL, and any comments you have included in your program.

The first function call occurs at line 26 with the following statement:

26 CALL show_menu()
2-24 Guide to the IBM Informix 4GL Interactive Debugger

The Terminal Display State
Figure 2-9 illustrates the appearance of the Source window immediately after
this statement executes.

Figure 2-9
Source Window After Executing show_menu()

The first nine lines of the show_menu function now appear in the Source
window, and the last line of the Source window has changed to reflect the fact
that show_menu is the current function.

As soon as the MENU statement executes, the program requires input from
the user. The Debugger switches to the Application screen and waits for you
to choose one of the menu options. Your choice determines the next program
segment to be executed.

37 FUNCTION show_menu()
38
39 DEFINE answer CHAR(1)
40
41 MESSAGE "Type the first letter of the option ",
42 "you want to select or CONTROL I for Help."
43
44 MENU "CUSTOMER"
45

(customer.4gl:show_menu)

$turn on sourcetrace
$run
Getting Started with the Debugger 2-25

The Terminal Display State
Choose the Add option to enter a new customer. The Debugger redisplays
the Debugger screen with the show_menu function still current and traces
the execution of the statements specified for this option.

Figure 2-10
Debugger Screen

When the Debugger executes line 52:

52 CALL enter_row()

the first nine lines of the new function appear in the Source window, and the
last line of the Source window changes to reflect the fact that enter_row is the
current function.

44 MENU "CUSTOMER"
45
46 COMMAND "Add" "Add a new customer." HELP 1
47
48 LET answer = "y"
49
50 WHILE answer = "y"
51
52 CALL enter_row()

(customer.4gl:show_menu)

$turn on sourcetrace
$run
2-26 Guide to the IBM Informix 4GL Interactive Debugger

The Terminal Display State
Figure 2-11
Source Window with enter_row as the Current Function

At line 131, the customer program again requires input:

131 INPUT p_customer.fname THRU p_customer.phone
132 FROM sc_cust.*

The Debugger redisplays the Application screen and waits for you to enter
the new customer information. At this point, you can enter values for a new
customer in the form and press ESC or RETURN after the last field to terminate
your entry.

As soon as input terminates, the Debugger redisplays the Source and
Command windows. The highlight bar moves line by line through the
remaining statements of the enter_row function.

121
122
123 FUNCTION enter_row()
124
125 LET int_flag = 0
126
127 MESSAGE ""
128
129 CLEAR FORM

(customer.4gl:enter_row)

$turn on sourcetrace
$run
Getting Started with the Debugger 2-27

The Terminal Display State
Figure 2-12
Highlight Bar Moving Through enter_row Function

At line 154, program control returns to the calling function show_menu:

154 END FUNCTION

The Debugger executes the statement beginning at line 54:

54 PROMPT "Do you want to "
55 "enter another row (y/n) ? "
56 FOR CHAR answer

and switches to the Application screen for your response. Your response to
this prompt determines the next program segment to be executed. If you
choose y, the program reexecutes the WHILE loop and recalls the enter_row
function. If you choose n, the program exits from the WHILE loop and redis-
plays the program menu.

142 INSERT INTO customer VALUES (p_customer.*)
143
144 LET p_customer.customer_num = SQLCA.SQLERRD[2]
145
146 DISPLAY p_customer.customer_num TO customer_num
147
148 MESSAGE "Row added."
149
150 SLEEP 3

(customer.4gl:enter_row)

$turn on sourcetrace
$run
2-28 Guide to the IBM Informix 4GL Interactive Debugger

Restoring the Environment
To complete this example

1. Enter n at the prompt to return to the program menu.

2. Choose one or more of the remaining options and continue
observing the interaction of the Debugger and Application screens.

3. Choose the Exit option when you are finished to end the program
and return the cursor to the Command window.

Restoring the Environment
The debugging parameters that you set while running the Debugger for a
particular session are saved and restored automatically as long as you do not
leave the Programmer’s Environment and as long as you do not access the
Debugger with a different program. The following features are automatically
restored:

■ The current terminal display state

■ Search path of 4GL source files

■ Tracepoints

■ Breakpoints

■ Programmer-defined aliases

You can, for example, exit from the Debugger, work with other menu options
such as FORM or PROGRAM, and reaccess the Debugger with the customer
program without losing the established debugging environment.

Saving the Environment
You can save your debugging parameters in a file for use in a subsequent
session. You can save all or some combination of the parameters listed in the
previous section.
Getting Started with the Debugger 2-29

Saving the Environment
The WRITE Command

The following diagram shows the syntax of the WRITE command.

You can use the WRITE command to save debugging parameters in a file. If
you do not specify an option, the WRITE command saves all of the current
debugging parameters. If you do not specify a filename, the WRITE command
creates or appends to a file with the same name as the current program. The
Debuggeraddstheextension .4db toanyfilecreatedwiththeWRITEcommand.

Enter write to save the current debugging environment.

Figure 2-13
Saving the Current Debugging Environment

ALIASES

DISPLAY

WRITE

BREAK

TRACE

filename>>

26 CALL show_menu()
27
28 MESSAGE "End program."
29
30 SLEEP 3
31
32 CLEAR SCREEN
33
34 END MAIN

(customer.4gl:main)

$turn on sourcetrace
$run
Program exited in main at line 34 in module "customer.4gl"
$write
$

2-30 Guide to the IBM Informix 4GL Interactive Debugger

Saving the Environment
In this example, WRITE saves the terminal display parameters and the
TIMEDELAY command options with their current values, and places them in
the customer.4db file.

The customer.4db File

When you use the WRITE command to save the debugging environment for
this session, the Debugger creates a file named customer.4db. The values in
this file are restored automatically whenever you access the Debugger and
initiate a new debugging session with the customer program.

To view the customer.4db file

1. Enter an exclamation point (!), followed by the appropriate system
command (such as cat, page, or more) to view the contents of
customer.4db.

For example:
!cat customer.4db

2. Press any key when done to return the cursor to the Command
window.

The following list shows the contents of this file:
alias f1 = help
alias f2 = step
alias f3 = step into
alias f4 = continue
alias f5 = run
alias f6 = list break trace
alias f7 = list
alias f8 = dump
alias f9 = exit
use = .
turn on autotoggle
turn on sourcetrace
turn on displaystops
turn on exitsource
turn off printdelay
timedelay source 1
timedelay command 0
list display
Getting Started with the Debugger 2-31

Saving the Environment
The function keys are defined with the ALIAS command, in a file named
init.4db. This file is placed in the $INFORMIXDIR/etc directory when you
install the Debugger software. These function keys are part of the debugging
environment and are included in the output of the WRITE command.
Chapter 8 provides more information on the system init.4db file.

The USE command allows you to tell the Debugger what directories to search
to locate your 4GL source files. This information is part of the debugging
environment and is included in the output of the WRITE command. Because
you have not entered the USE command in the current session, the Debugger
searches only the current directory. The current directory is symbolized by a
period following the equal sign (=.).

All of the terminal display parameters are saved with their default values
with the exception of SOURCETRACE, which you have turned on. The two
options of the TIMEDELAY command are also saved with default values.

The current sizes of the Source and Command windows are not saved by
WRITE unless you have changed the default sizes with the GROW command.
These values are included in the output of the LIST command as SOURCE
LINES and COMMAND LINES, respectively. Refer to “The LIST Command” on
page 2-17 to review the default values. See Chapter 9 for information on the
GROW command.

The final line in the file is the command:

list display

This command is appended by the Debugger to every .4db file created with
the WRITE command that includes terminal display characteristics. The LIST
DISPLAY command indicates that the Debugger should automatically
display these characteristics to the Command window when the
environment is restored.

If you do not use the WRITE command to save all or some part of the current
operating environment, no .4db file is produced, and you will need to
reestablish the environment in future sessions.

Alternatively, you can specify a different name for the file. In this case, you
specifically need to tell the Debugger to read the contents of the file during
the session.

Chapter 8 provides more information on the .4db files and their use.
2-32 Guide to the IBM Informix 4GL Interactive Debugger

Saving the Environment
Exiting from the Session

You use the EXIT command to stop operation of the Debugger. If you are
running the Debugger from the Programmer’s Environment, entering exit
returns you to the MODULE or PROGRAM menu.

Figure 2-14
The EXIT Command

You must successfully compile a 4GL program before you can debug it. When
a program is running under the Debugger, the terminal display toggles
between the Debugger and the Application screens. While the Debugger
screen is displayed, you can monitor the execution of your source code in the
Source window and enter commands in the Command window. The
Command window also displays output from your commands. You can
scroll the contents of both windows using CTRL keys and the UP ARROW and
DOWN ARROW keys.

The Application screen allows you to work with your program as if it were
running outside the Debugger. Terminal display parameters control the
interaction of Debugger windows and the Debugger and Application
screens. The debugging parameters that you set during a session are restored
automatically while you remain within the Programmer’s Environment. In
addition, you can save these parameters in a file for use at some other time.

26 CALL show_menu()
27
28 MESSAGE "End program."
29
30 SLEEP 3
31
32 CLEAR SCREEN
33
34 END MAIN

(customer.4gl:main)

$turn on sourcetrace
$run
Program exited in main at line 34 in module "customer.4gl"
$write
$exit
Getting Started with the Debugger 2-33

3
Chapter
Tracing Logic of the customer
Program
In This Chapter . 3-3

Restoring the Environment 3-4

The TRACE Command 3-5
Tracing a Line Number 3-5
Tracing a Variable 3-6
Tracing a Function 3-7
Tracing All Functions 3-8
Setting a Tracepoint 3-8

Outputting to a File 3-9

Running with a Tracepoint 3-10

The DUMP Command. 3-17
The GLOBALS Option 3-17
The ALL Option 3-17
Dumping to a File 3-18
Executing the DUMP Command 3-18

Interrupting Program Execution 3-18
Interrupting a Program Versus Interrupting

the Debugger 3-19
Entering an Interrupt 3-19

Examining Global Variables 3-22
Examining Local Variables 3-24

Combining Commands 3-25

Removing Tracepoints 3-27

3-2 Guid
The CONTINUE Command 3-29
Sending an Interrupt to a Program 3-29
Entering the CONTINUE Command 3-29

Saving and Exiting 3-32
e to the IBM Informix 4GL Interactive Debugger

In This Chapter
You are now acquainted with the debugging environment and know how to
monitor INFORMIX-4GL statements as they execute. This chapter introduces
you to an important and powerful debugging tool, the setting of tracepoints.
The following topics are covered:

■ How the debugging environment is restored when you start a new
session

■ How to use the TRACE command to set tracepoints

■ How to use the DUMP command to see the values of global and local
variables in the current function

■ How to interrupt a program and resume execution from the point of
interruption

■ How to combine commands

■ How to use the NOTRACE command to remove a tracepoint

The examples in this chapter use the same sample program, form, and help
file as those in the previous chapter.
Tracing Logic of the customer Program 3-3

Restoring the Environment
Restoring the Environment
The Debugger provides many tools to monitor the execution of a 4GL
program. You can, for example, trace functions as they execute, or trace the
values of variables as they change. You can list the functions that have been
called to arrive at the current statement. You can interrupt your program,
change the value of a variable or variables, and continue execution with the
new values. Any of these methods provides valuable insights into the
operation of a program, and there is no single best approach in any particular
case. The examples in this chapter show you how to use the TRACE and
DUMP commands to learn more about customer.4gl.

To view restored values from the customer program, access the Debugger
and select the customer program as in the previous chapter. When the
Debugger screen appears, the following information scrolls through the
Command window:

Current search path: .

TERMINAL DISPLAY STATE
autotoggle on
displaystops on
sourcetrace on
exitsource on
printdelay off
timedelay source 1
timedelay command 0
source lines 9
command lines 10

All these values, with the exception of SOURCE LINES and COMMAND LINES,
are restored from the customer.4db file that you created with the WRITE
command at the end of the previous chapter. All the parameters and
commands appear with their default values except SOURCETRACE, which
you saved with a value of on.

Tip: If you have not left the Programmer’s Environment since carrying out the
debugging steps in Chapter 2, “Getting Started with the Debugger,” these values are
restored not from customer.4db but from a temporary file that remains in existence
as long as you are running 4GL. The same information is displayed whether the
environment is restored from a temporary file or from a .4db file. If you left the
Programmer’s Environment and did not issue the WRITE command at the end of
Chapter 2, no values are restored or displayed.
3-4 Guide to the IBM Informix 4GL Interactive Debugger

The TRACE Command
The TRACE Command
The TRACE command allows you to set a tracepoint when any of the
following situations occurs:

■ A particular line of code executes

■ The value of a specific variable changes

■ A specific function executes

■ Any function in the program executes

When the Debugger encounters a tracepoint, it displays information in the
Command window or, optionally, in a file. This information includes the line
number, function name, and module name where the tracepoint was
reached, as well as any optional instructions you have specified. Program
execution continues automatically.

The following sections illustrate the different options for setting tracepoints,
with examples from customer.4gl.

Tracing a Line Number
The simple format for setting a tracepoint at a line number is as follows:

TRACE lineno

For example, to set a tracepoint at line number 192:

192 PREPARE ex_stmt FROM sel_stmt

you would enter the following command:

trace 192

This command causes the Debugger to record when line 192 executes, and to
display the module and function name in which this line occurs.
Tracing Logic of the customer Program 3-5

Tracing a Variable
If the statement you are tracing spans several lines, the tracepoint is set at the
first line in the statement. If you enter a line number that does not designate
an executable statement, the tracepoint is set instead at the first executable
statement following the line number. For example, if you set a tracepoint at
line 160:

160 DEFINE
161 where_clause CHAR(200),
162 sql_stmt CHAR(250),
163 answer CHAR(1),
164 exist SMALLINT
165
166 LET int_flag = 0
167
168

the tracepoint actually occurs at line 166 because DEFINE is not an executable
statement:

166 LET int_flag = 0

If your program consists of more than one module, and the module name is
not specified, the Debugger sets the tracepoint in the module currently
displayed in the Source window. See Chapter 5, “A Multi-Module Program:
cust_order,” for information on setting tracepoints in a multi-module
program.

Tracing a Variable
The simple format for tracing a variable is as follows:

TRACE variable

To trace when the value of the global variable chosen changes, enter the
following command:

trace chosen

This command causes the Debugger to output the new value every time the
value of chosen changes between 0 (FALSE) and 1 (TRUE). It also records the
line number, module name, and function name at which each change occurs.
3-6 Guide to the IBM Informix 4GL Interactive Debugger

Tracing a Function
You must qualify a global variable with the keyword GLOBAL if there is a
local variable with the same name in the function currently displayed in the
Command window. To set a tracepoint on a local variable, you must either
make its function the current function by displaying it in the Source window,
or qualify the variable with the function name.

For example, if you want to set a tracepoint on the variable exist in the
query_data function, you must either use the VIEW command to display the
query_data function in the Source window or specify the function in which
the variable appears using one of the following conventions:

trace (query_data) exist

or

trace function.query_data.exist

Chapter 5 contains more information on specifying the scope of reference of
variables.

Tracing a Function
The simple format for tracing a function is as follows:

TRACE function

To trace when the change_data function executes, you can enter the
following command:

trace change_data

This command causes the Debugger to output the line numbers where the
function is called and where it returns. The Debugger also records any
parameters passed to or returned by the function. Chapter 6, “Tracing Logic
of the cust_order Program,” provides an example of a parameter returned by
a traced function.

Do not use parentheses when setting a tracepoint on a function.
Tracing Logic of the customer Program 3-7

Tracing All Functions
Tracing All Functions
You can use the FUNCTIONS keyword to trace all functions in the current
program. Because functions are often nested, tracing all functions can
provide a convenient map of the flow of program control.

To trace all functions in a program, enter the following command:

trace functions

When you trace all functions, the Debugger records when each function
begins execution and when each terminates. It also records any parameters
passed to or returned by these functions.

This chapter illustrates tracing all the functions in the customer program.

Setting a Tracepoint
When you define a tracepoint, the Debugger assigns it a reference number
and displays this number in the Command window. For example, you can
enter trace functions to trace all functions in the customer program.

Figure 3-1 illustrates your entry of this command and the Debugger
response.
3-8 Guide to the IBM Informix 4GL Interactive Debugger

Setting a Tracepoint
Figure 3-1
Setting a Tracepoint

The Debugger assigns this tracepoint a reference number of (1).

Outputting to a File

When the Debugger encounters a tracepoint, it generates output to the
Command window. Alternatively, you can designate a file to receive the
output by using the symbol >> and specifying a filename. If a file with this
name does not currently exist, the Debugger creates it. If a file with this name
already exists, the Debugger appends the output from the tracepoint to it. To
redirect the output of the command TRACE FUNCTIONS to the file session1,
you would enter the following command:

trace functions >> session1

While deciding whether or not to send output from Debugger commands to
a file, keep in mind that the Command window holds the 50 most recent lines
in a buffer, which can be scrolled. If you anticipate that your commands will
generate more than 50 lines of output, or if you want a record of the session
after it has ended, specify a filename.

11 MAIN
12
13 DEFER INTERRUPT
14
15 OPEN FORM cust_form FROM "customer"
16
17 DISPLAY FORM cust_form
18
19 LET chosen = FALSE

(customer.4gl:main)

sourcetrace on
exitsource on
printdelay off
timedelay source 1
timedelay command 0
source lines 9
command lines 10
$trace functions
(1) trace functions
$

Tracing Logic of the customer Program 3-9

Running with a Tracepoint
Running with a Tracepoint
You are now ready to begin program execution with the tracepoint you
have set.

To execute a program with a tracepoint

1. Enter the RUN command or press F5 to start operation of the
Debugger.

Because the value of SOURCETRACE is ON, the Source window
highlights each statement as it executes. The tracepoint is first
reached at line 26 in the MAIN section:

26 CALL show_menu()

The Debugger enters the show_menu function and records the
tracepoint, as shown in Figure 3-2.

Figure 3-2
Entering the show_menu Function

When the Debugger executes the MENU statement at line 44, it
switches to the Application screen and waits for you to make a
selection.

37 FUNCTION show_menu()
38
39 DEFINE answer CHAR(1)
40
41 MESSAGE "Type the first letter of the option ",
42 "you want to select or CONTROL I for Help."
43
44 MENU "CUSTOMER"
45

(customer.4gl:show_menu)

$run
Enter show_menu() from main line 26
3-10 Guide to the IBM Informix 4GL Interactive Debugger

Running with a Tracepoint
2. Choose the Query option.

When you choose the Query option, the program calls the
query_data function. The Debugger modifies the contents of the
Command window to register the new occurrence of the tracepoint,
as shown in Figure 3-3.

Figure 3-3
Entering the query_data Function

When the Debugger executes the statement at line 179:
179 CONSTRUCT where_clause ON customer.* FROM customer_num,
180 fname, lname, company, address1, address2, city, state,
181 zipcode, phone

it redisplays the Application screen and waits for you to enter search
criteria, as shown in Figure 3-4.

169
170 CLEAR FORM
171
172
173 MESSAGE "Enter search criteria and press ESC."
174
175 SLEEP 3
176
177 MESSAGE ""

(customer.4gl:query_data)

timedelay command 0
source lines 9
command lines 10
$trace functions
(1) trace functions
$run
Enter show_menu() from main line 26
Enter query_data() from show_menu line 64
Tracing Logic of the customer Program 3-11

Running with a Tracepoint
Figure 3-4
Entering Search Criteria

3. Enter the search criterion for customers whose last name matches the
pattern B* and press ESC to terminate your query.

If a query returns no rows, the query_data function terminates
automatically, and program control returns to the calling function,
show_menu. If a query returns one or more rows, the function termi-
nates when you enter y in response to the following prompt:

Enter 'y' to select this customer or RETURN
to view next customer:

or when the active set is exhausted.

4. Press RETURN, if necessary, in response to this prompt until the record
for customer Dick Baxter is displayed on the form.

5. Enter y to select this customer.

When you make your entry, the remaining statements in the
query_data function execute, and the Debugger modifies the
contents of the Command window to record the return from the
function, as shown in Figure 3-5.

CUSTOMER: Add Query Modify Delete Exit
Search for a customer.
- -

CUSTOMER FORM

Number: []

First Name: [] Last Name: []

Company: []

Address: []
[]

City: []

State: [] Zipcode: []

Telephone: []
3-12 Guide to the IBM Informix 4GL Interactive Debugger

Running with a Tracepoint
Figure 3-5
Returning from the query_data Function

The row you have selected can be updated or deleted.

6. Choose the Modify option to update the values for the customer
currently displayed on the form.

The program calls the change_data function, and the Debugger
provides new output to the Command window.

62 COMMAND "Query" "Search for a customer." HELP 2
63
64 CALL query_data()
65
66 IF chosen THEN
67
68 NEXT OPTION "Modify"
69
70 END IF

(customer.4gl:show_menu)

source lines 9
command lines 10
$trace functions
(1) trace functions
$run
Enter show_menu() from main line 26
Enter query_data() from show_menu line 64
Return from query_data at line 244
Tracing Logic of the customer Program 3-13

Running with a Tracepoint
Figure 3-6
Entering the change_data Function

When the Debugger executes the statement at line 251:
251 INPUT p_customer.fname THRU p_customer.phone

WITHOUT DEFAULTS FROM sc_cust.*

it redisplays the Application screen and waits for you to change one
or more data values.

7. Update the current customer record and press ESC to commit your
changes.

The change_data function terminates after updating the values for
the customer in the database, and program control returns to the
calling function. The Debugger records the return from the
change_data function, as shown in Figure 3-7.

245
246
247 FUNCTION change_data()
248
249 LET int_flag = 0
250
251 INPUT p_customer.fname THRU p_customer.phone
252 WITHOUT DEFAULTS FROM sc_cust.*
253

(customer.4gl:change_data)

(1) trace functions
$run
Enter show_menu() from main line 26
Enter query_data() from show_menu line 64
Return from query_data at line 244
Enter change_data() from show_menu line 76
3-14 Guide to the IBM Informix 4GL Interactive Debugger

Running with a Tracepoint
Figure 3-7
Returning from the change_data Function

8. Choose the Exit option to terminate the program.

The appearance of the Debugger screen when you end execution of
the program is as shown in Figure 3-8.

40
41 MESSAGE "Type the first letter of the option ",
42 "you want to select or CONTROL I for Help."
43
44 MENU "CUSTOMER"
45
46 COMMAND "Add" "Add a new customer." HELP 1
47
48 LET answer = "y"

(customer.4gl:show_menu)

$trace functions
(1) trace functions
$run
Enter show_menu() from main line 26
Enter query_data() from show_menu line 64
Return from query_data at line 244
Enter change_data() from show_menu line 76
Return from change_data at line 270
Tracing Logic of the customer Program 3-15

Running with a Tracepoint
Figure 3-8
Exiting the Program

26 CALL show_menu()
27
28 MESSAGE "End program."
29
30 SLEEP 3
31
32 CLEAR SCREEN
33
34 END MAIN

(customer.4gl:main)

$run
Enter show_menu() from main line 26
Enter query_data() from show_menu line 64
Return from query_data at line 244
Enter change_data() from show_menu line 76
Return from change_data at line 270
Return from show_menu at line 120
Return from main at line 34
Program exited in main at line 34 in module "customer.4gl"
$

3-16 Guide to the IBM Informix 4GL Interactive Debugger

The DUMP Command
The DUMP Command

The DUMP command provides an easy way to monitor the values of all
global, module, and local variables in the currently executing function. The
DUMP command has two options. If you do not specify GLOBALS or ALL, the
Debugger displays the values of all local variables in the currently executing
function.

The GLOBALS Option
If you specify GLOBALS, the Debugger displays the values of all
programmer-defined global and module variables in the currently executing
function, as well as the values of the following 4GL global variables:

■ int_flag

■ quit_flag

■ status

■ the elements of the SQLCA record

The ALL Option
If you specify ALL, the Debugger displays the values of all global, module,
and local variables in the currently executing function.

>> filenameGLOBALS

ALL

DUMP
Tracing Logic of the customer Program 3-17

Dumping to a File
Dumping to a File
You can redirect the output of the DUMP command to a file with the >>
symbol. Write the output of the DUMP command to a file if you anticipate that
this output will exceed 50 lines, or if you want a record after the session has
ended. The following command redirects the output of the DUMP command
to the file named session1:

dump globals >> session1

Executing the DUMP Command
In order for you to use the DUMP command, your program must be running.
You must, therefore, do one of the following things:

■ Interrupt the program, enter the DUMP command, and continue
operation.

■ Combine DUMP with another command such as TRACE.

The following section shows how to interrupt program execution and
display the current values of program variables. The section “Combining
Commands” on page 3-25 shows how to combine the TRACE and DUMP
commands to list the values of variables automatically as tracepoints are
reached.

Interrupting Program Execution
An important feature of the debugging process is the ability to interrupt a
program and resume execution from the point of interruption. You can
interrupt the execution of a program at any time by pressing the Interrupt
key (usually DEL or CTRL-C) on your terminal. The cursor returns to the
Command window, which can accept any valid Debugger command.
3-18 Guide to the IBM Informix 4GL Interactive Debugger

Interrupting a Program Versus Interrupting the Debugger
Interrupting a Program Versus Interrupting the Debugger
When a 4GL program is running outside the Debugger, an interrupt entered
by the user terminates execution unless you have issued a DEFER INTERRUPT
command. If you have issued the DEFER INTERRUPT command, 4GL sets the
value of the global variable int_flag to 1, or TRUE, and takes the action you
have specified. See the INFORMIX-4GL Reference for more information on the
DEFER INTERRUPT command.

When a 4GL program is running under the Debugger, however, pressing the
Interrupt key suspends program execution and returns control of the
Debugger to you. The Source window highlights the next statement to
execute when operation resumes. The cursor returns to the Command
window, which can accept any valid instruction.

Entering an Interrupt
The following procedure describes how to interrupt execution of the
customer program and dump the current values of all program variables.

To enter an interrupt

1. Rerun the customer program.

2. Choose the Query option.

3. Enter the search criterion Redwood City in the City field and
press ESC.

4. Press RETURN, if necessary, in response to the prompt until the infor-
mation for Anthony Higgins is retrieved and displayed, as shown in
Figure 3-9.
Tracing Logic of the customer Program 3-19

Entering an Interrupt
Figure 3-9
Customer Information for Anthony Higgins

5. Press the Interrupt key (usually DEL or CTRL-C) on your terminal to
suspend execution of the program and return the cursor to the
Command window.

The Debugger registers the interrupt, as shown in Figure 3-10.

CUSTOMER: Add Query Modify Delete Exit
Search for a customer.
- -

CUSTOMER FORM

Number: [104]

First Name: [Anthony] Last Name: [Higgins]

Company: [Play Ball!]

Address: [East Shopping Cntr.]
[422 Bay Road]

City: [Redwood City]

State: [CA] Zipcode: [94026]

Telephone: [415-368-1100]
- -
Enter ’y’ to select this customer or RETURN to view next customer:
3-20 Guide to the IBM Informix 4GL Interactive Debugger

Entering an Interrupt
Figure 3-10
Debugger Showing an Interrupt

6. Enter the following command to view the current values of the
program variables:

dump all

The Debugger lists both global and local variables in the query_data
function in response to this command.

198 LET chosen = FALSE
199
200 FOREACH q_curs INTO p_customer.*
201
202 LET exist = TRUE
203
204 DISPLAY BY NAME p_customer.*
205
206 PROMPT "Enter ’y’ to select this customer ",

(customer.4gl:query_data)

Enter change_data() from show_menu line 76
Return from change_data at line 270
Return from show_menu at line 120
Return from main at line 34
Program exited in main at line 34 in module "customer.4gl"
$run
Enter show_menu() from main line 26
Enter query_data() from show_menu line 64
Stopped in query_data at line 206 in module "customer.4gl"
$

Tracing Logic of the customer Program 3-21

Entering an Interrupt
Examining Global Variables

The Debugger displays the values of all global variables in the current
function under the heading DUMPING GLOBAL VARIABLES. The following
code example illustrates the values of the global variables at this point in the
execution of the program. A brief description of each variable follows the
example.

DUMPING GLOBAL VARIABLES

p_customer = {
customer_num = 104
fname = "Anthony "
lname = "Higgins "
company = "Play Ball! "
address1 = "East Shopping Cntr. "
address2 = "422 Bay Road "
city = "Redwood City "
state = "CA"
zipcode = "94026"
phone = "415-368-1100 "

}
chosen = 0
status = 0
int_flag = 0
quit_flag = 0
sqlca = {

sqlcode = 0
sqlerrm = (null)
sqlerrp = (null)
sqlerrd = {0, 0, 5, 0, 0, 18}
sqlawarn = " "

}

p_customer

The values currently assigned to the members of the p_customer record are
those of Anthony Higgins.

chosen

The value of chosen is 0, or FALSE, indicating that no customer has been
selected at this point.
3-22 Guide to the IBM Informix 4GL Interactive Debugger

Entering an Interrupt
status

The value of status is 0, indicating that the most recent statement that sets this
variable has successfully executed. 4GL updates the value of status when an
SQL or form-related statement executes.

int_flag

The value of int_flag is 0, or FALSE. The value of int_flag is FALSE, even
though you have pressed the Interrupt key. This is because an interrupt
entered during operation of the Debugger returns control of the Debugger to
you. No interrupt signal is sent to the program. To send an interrupt to the
program and set the value of int_flag to 1, you must use the CONTINUE
INTERRUPT command. This command is described in the section “Sending
an Interrupt to a Program” on page 3-29.

quit_flag

The value of quit_flag is 0, or FALSE, indicating that no quit signal has been
sent to the program. See the INFORMIX-4GL Reference for more information on
the quit_flag variable and the DEFER QUIT command.

The SQLCA Record

The last global variables to be listed are the elements of the SQLCA record.

The value of sqlcode is set to 0, indicating that the most recent SQL statement
has successfully executed. 4GL uses this member of the SQLCA record to
update the value of status every time an SQL statement executes.

The variables sqlerrm and sqlerrp are not implemented at this time and
appear in the output as NULL.

Two of the six elements of the array sqlerrd have values following execution
of the query, and those that have not been assigned values appear as 0. The
third element, sqlerrd[3], is set to 5, corresponding to the five rows retrieved
by the query. The last element, sqlerrd[6], is set to 18. This is the row ID of the
last row processed. Because the field on which you have queried, City, is not
indexed, this value is the row ID of the last customer in the table.
Tracing Logic of the customer Program 3-23

Entering an Interrupt
Tip: If you have added or deleted customer rows while working with the program, the
values of sqlerrd[3] and sqlerrd[6] might be different. These elements of the sqlerrd
array are principally used following database inserts.

The value of sqlawarn is blank because no warnings were received in the
execution of the query.

See the INFORMIX-4GL Reference for more information on the SQLCA record
and its members.

Examining Local Variables

Following the display of global variables, the Debugger lists the values of the
local variables in the current function under the heading DUMPING LOCAL
VARIABLES OF FUNCTION [query_data]. There are four local variables in the
function:

DUMPING LOCAL VARIABLES OF FUNCTION [query_data]

where_clause = "customer.city="Redwood City"

"

sql_stmt = "SELECT * FROM customer where customer.city="Redwood City"

"
answer = (null)
exist = 1

where_clause

The first variable, where_clause, holds the clause constructed by 4GL when
the user presses ESC to indicate that all search criteria have been entered. The
where_clause variable is a CHARACTER variable of length 200.

sql_stmt

The variable sql_stmt holds the string that is formed by concatenating the
SELECT statement with where_clause. The sql_stmt variable is a
CHARACTER variable of length 250.
3-24 Guide to the IBM Informix 4GL Interactive Debugger

Combining Commands
answer

The value of answer is NULL, indicating that you have not yet pressed y or
RETURN in response to the prompt on this iteration of the FOREACH loop.

exist

The value of exist is set to 1, or TRUE, because the FOREACH loop has success-
fully retrieved at least one row.

Combining Commands
You can specify the action to be taken when a tracepoint is reached by placing
Debugger commands in curly braces following the definition of the trace-
point. The general format for specifying commands is as follows.

In the current example, you can combine the TRACE and DUMP commands
to trace the functions of customer.4gl, printing out the current values of all
global and local variables automatically as each function executes.

Set a new tracepoint as follows:

trace functions { dump all }

Figure 3-11 illustrates your entry of this command and the response from the
Debugger.

TRACE Variable

FUNCTIONS

function

lineno command{ }
Tracing Logic of the customer Program 3-25

Combining Commands
Figure 3-11
Combining the TRACE and DUMP Commands

Because there is one existing tracepoint:

(1) trace functions

the Debugger assigns the new tracepoint a reference number of (2). The
keyword execute indicates the action the Debugger will take when it reaches
the tracepoint.

198 LET chosen = FALSE
199
200 FOREACH q_curs INTO p_customer.*
201
202 LET exist = TRUE
203
204 DISPLAY BY NAME p_customer.*
205
206 PROMPT "Enter ’y’ to select this customer ",

(customer.4gl:query_data)

sql_stmt = "SELECT * FROM customer where customer.city="Redwood City"

"
answer = (null)
exist = 1

$trace functions {dump all}
(2) trace functions

execute: {dump all}
$

3-26 Guide to the IBM Informix 4GL Interactive Debugger

Removing Tracepoints
Removing Tracepoints
It is not possible to edit an existing tracepoint. If you want to modify the
command, you must remove the tracepoint and set another one.

You use the NOTRACE command to remove a tracepoint. You can refer to
tracepoints by their reference numbers when removing them. The format for
removing a tracepoint by its reference number is as follows:

NOTRACE refno

See Chapter 9 for more information on the NOTRACE command and its
options.

To remove a tracepoint

1. Enter the following command to remove the first tracepoint you
have set, (1) trace functions:

notrace 1

2. Confirm that tracepoint (2) is now the only existing tracepoint by
entering the LIST command as follows:

list trace

The appearance of the Command window when you have made
your entries is as shown in Figure 3-12.
Tracing Logic of the customer Program 3-27

Removing Tracepoints
Figure 3-12
Command Window

Because tracepoint (2) is currently active, it appears here as ENABLED.
Chapter 4, “Analyzing a Logical Error in the customer Program,” shows you
how to use the DISABLE command to deactivate a tracepoint without
removing it. You are now ready to resume operation of the program with
tracepoint (2).

198 LET chosen = FALSE
199
200 FOREACH q_curs INTO p_customer.*
201
202 LET exist = TRUE
203
204 DISPLAY BY NAME p_customer.*
205
206 PROMPT "Enter ’y’ to select this customer ",

(customer.4gl:query_data)

$trace functions {dump all}
(2) trace functions

execute: {dump all}
$notrace 1
Removed point(s) 1.
$list trace
ENABLED TRACE POINTS:
(2) trace functions

execute: {dump all}
$

3-28 Guide to the IBM Informix 4GL Interactive Debugger

The CONTINUE Command
The CONTINUE Command
You use the CONTINUE command to resume operation of a program.
CONTINUE restarts the program from the point of interruption rather than
from the beginning.

In the present example, you interrupted execution while the PROMPT
statement at line 206 was awaiting input. This is the point at which execution
resumes.

Sending an Interrupt to a Program
You can use the CONTINUE command with the INTERRUPT option to bypass
the Debugger and send an interrupt directly to your program. For example,
you would want to do this in order to test those sections of your code that
handle interrupts entered by the user.

If you have included the DEFER INTERRUPT statement in your program,
issuing the command:

continue interrupt

sets the value of the global variable int_flag to 1, or TRUE.

If you have not included the DEFER INTERRUPT statement in your program,
issuing the CONTINUE INTERRUPT command aborts program execution and
returns control to the Debugger.

Chapter 9 provides more information on CONTINUE INTERRUPT.

Entering the CONTINUE Command
You are ready to resume execution with the new tracepoint. Now the
Debugger will output the values of all global and local variables in a function
as soon as the function is entered.
Tracing Logic of the customer Program 3-29

Entering the CONTINUE Command
To enter the CONTINUE command

1. Enter the CONTINUE command, or press F4, to resume execution of
the program.

When you make your entry, the Debugger redisplays the
Application screen with the values for Anthony Higgins still current.
The cursor is at the prompt, and the program is awaiting input. The
appearance of the Application screen is as shown in Figure 3-13.

Figure 3-13
Continuing Execution Following an Interrupt

2. Enter y in response to the prompt to select this customer.

The Debugger toggles briefly to the Debugger screen as it registers
the return from the query_data function. It then redisplays the
Application screen with the Modify option highlighted.

CUSTOMER: Add Query Modify Delete Exit
Search for a customer.
- -

CUSTOMER FORM

Number: [104]

First Name: [Anthony] Last Name: [Higgins]

Company: [Play Ball!]

Address: [East Shopping Cntr.]
[422 Bay Road]

City: [Redwood City]

State: [CA] Zipcode: [94026]

Telephone: [415-368-1100]
- -
Enter ’y’ to select this customer or RETURN to view next customer:
3-30 Guide to the IBM Informix 4GL Interactive Debugger

Entering the CONTINUE Command
3. Choose the Modify option to update the current record.

When you make your selection, the program calls the change_data
function. The Debugger registers the start of the new function in the
Command window and automatically outputs the current values of
all global variables in this function. There are no local variables in the
function.

The following display illustrates the output to the Command
window at this occurrence of the tracepoint:

Enter change_data from show_menu line 76
DUMPING GLOBAL VARIABLES

p_customer = {
customer_num = 104
fname = "Anthony "
lname = "Higgins "
company = "Play Ball! "
address1 = "East Shopping Cntr. "
address2 = "422 Bay Road "
city = "Redwood City "
state = "CA"
zipcode = "94026"
phone = "415-368-1100 "

}
chosen = 1
status = 0
int_flag = 0
quit_flag = 0
sqlca = {
sqlcode = 0
sqlerrm = (null)
sqlerrp = (null)
sqlerrd = {0, 0, 0, 0, 0, 18}
sqlawarn = " "
}

You observe that the values currently assigned to the p_customer
program record are those of Anthony Higgins. The value of chosen
is set to 1, indicating that this customer has been selected.

4. Modify one or more values for this customer and press ESC to
commit your changes.

5. Choose the Exit option to end the program and return control to the
Debugger.
Tracing Logic of the customer Program 3-31

Saving and Exiting
Saving and Exiting
Tracepoints and breakpoints that you have defined during a debugging
session are saved and restored automatically if you remain in the 4GL
Programmer’s Environment and if you do not initiate a debugging session
with a different program. You can use the WRITE command with the TRACE
option to save tracepoints in a file for use in future debugging sessions with
the customer program.

There is currently one active tracepoint, trace functions { dump all }.

To save and exit from the Debugger

1. Enter the following command to save this tracepoint as part of the
debugging environment:

write trace

The Debugger appends the tracepoint to the file customer.4db. The
contents of this file now include the following debugging
parameters:

alias f1 = help
alias f2 = step
alias f3 = step into
alias f4 = continue
alias f5 = run
alias f6 = list break trace
alias f7 = list
alias f8 = dump
alias f9 = exit
use = .
turn on autotoggle
turn on sourcetrace
turn on displaystops
turn on exitsource
turn off printdelay
timedelay source 1
timedelay command 0
list display
trace functions {dump all}

2. Enter the EXIT command or press F9 to end the debugging session
and return to the Programmer’s Environment.
3-32 Guide to the IBM Informix 4GL Interactive Debugger

Saving and Exiting
Tracepoints are an excellent way to familiarize yourself with the flow of
control of unfamiliar programs. You can set tracepoints to monitor when
particular statements or functions execute or when the values of variables
change. When a tracepoint is reached, the Debugger displays relevant infor-
mation regarding the tracepoint in the Command window. This information
includes the function name, line number, and module name at which the
tracepoint occurred. If you are tracing a function, the Debugger displays any
values passed to or returned by the function. Program execution resumes
automatically.

The DUMP command allows you to display the values of local, global, and
module variables in the currently executing function. You can combine the
TRACE and DUMP commands so that the listing of variables occurs automat-
ically when tracepoints execute.

You can interrupt a program at any time by pressing the Interrupt key.
Pressing the Interrupt key returns control of the Debugger to you so that you
can perform such activities as viewing the current values of program
variables. You can use the CONTINUE command to resume execution of the
program from the point of interruption.
Tracing Logic of the customer Program 3-33

4
Chapter
Analyzing a Logical Error in the
customer Program
In This Chapter . 4-3

Observing Problems with the Program 4-4
Choosing Delete Twice in Succession 4-4
Choosing Delete and Modify in Succession 4-6

Accessing the Debugger 4-8
The Restored Environment 4-8

Reference Numbers 4-9
Modifying the Environment 4-9

The BREAK Command 4-10
Breaking at a Line Number. 4-11
Breaking at a Variable 4-11
Breaking at a Function 4-12
Breaking If an Expression Is True. 4-12
Specifying a Count 4-13
Specifying a Condition 4-13
Setting the First Breakpoint for the Current Session 4-14

The DISABLE Command 4-16

Reaching the First Breakpoint 4-17

The PRINT Command. 4-19
Printing the Value of a Variable 4-20
Printing the Values of Record Members 4-20
Entering the PRINT Command 4-21

The LET Command 4-22

The STEP Command 4-23
Entering the STEP Command 4-23

4-2 Guid
The NOBREAK Command 4-25

Setting the Second Breakpoint for the Current Session 4-25
Reaching the Second Breakpoint 4-27

Saving and Exiting 4-29

Correcting the customer Program 4-31
e to the IBM Informix 4GL Interactive Debugger

In This Chapter
By now you are familiar with the general operation of the Debugger and with
some of the tools available to you for tracing program logic. You have used
these tools to gain insight into the operation of the customer.4gl program.

A bug has been coded into this program that causes it to produce undesirable
results in two circumstances. This chapter illustrates the use of the Debugger
to discover the source of the problem, and introduces a new and important
diagnostic tool, the setting of breakpoints. The following topics are covered:

■ How to use the BREAK command to suspend program execution
when a specific point in the program is reached or a specific
condition is met

■ How to use the DISABLE command to deactivate tracepoints or
breakpoints during a debugging session

■ How to use the PRINT command to display the value of a variable

■ How to use the LET command to change the value of a variable

■ How to use the STEP command to execute one or more
INFORMIX-4GL statements

■ How to use the NOBREAK command to permanently remove a
breakpoint

The examples in this chapter are based on the same sample program, form,
and help file as in the previous two chapters.
Analyzing a Logical Error in the customer Program 4-3

Observing Problems with the Program
Observing Problems with the Program
An intentional bug causes problems with the customer program if either of
the following situations occurs:

■ The Delete menu option is chosen two or more times in succession.

■ The Delete and Modify menu options are chosen in sequence.

This section shows you how to produce these problems while running the
program outside the Debugger. Following this, you will access the Debugger
and use it to discover the cause of the problems.

To run the program from the outside the debugger

1. Enter r4gl at the system prompt.

2. Choose the Module option from the INFORMIX-4GL menu.

3. Choose the Run option from the MODULE menu.

4. Select the customer program.

Choosing Delete Twice in Succession
A problem occurs with the program if you choose the Delete option two or
more times in succession.

To illustrate the undesirable result

1. Choose the Query option and enter search criteria for customer
Charles Ream.

2. Enter y at the prompt to select this customer.

3. Choose the Delete option to remove this customer from the
database.

When you choose the Delete option, the show_menu function asks
you to confirm that you want to delete the customer. The Application
screen appears as in Figure 4-1.
4-4 Guide to the IBM Informix 4GL Interactive Debugger

Choosing Delete Twice in Succession
Figure 4-1
Deleting a Customer

4. Enter y to confirm the deletion.

When you make your entry, show_menu calls the delete_row
function. This function deletes the customer from the database,
clears the form, and displays the following message:

Row deleted.

5. Choose the Delete option a second time.

As soon as you select this option, the prompt reappears, even though
no customer is currently displayed on the form, as shown in
Figure 4-2.

CUSTOMER: Add Query Modify Delete Exit
Delete a customer.
- -

CUSTOMER FORM

Number: [107]

First Name: [Charles] Last Name: [Ream]

Company: [Athletic Supplies]

Address: [41 Jordan Avenue]
[]

City: [Palo Alto]

State: [CA] Zipcode: [94304]

Telephone: [415-356-9876]
- -
Are you sure you want to delete this customer (y/n)?
Analyzing a Logical Error in the customer Program 4-5

Choosing Delete and Modify in Succession
Figure 4-2
Choosing the Delete Option a Second Time

6. Enter y in response to this prompt.

The message "Row deleted." redisplays, even though no customer
is present on the form to delete.

7. Choose the Delete option and respond to the prompt one or more
additional times to confirm that the message continues to display
incorrectly.

Choosing Delete and Modify in Succession
The second undesirable result occurs if you choose the Modify menu option
immediately subsequent to carrying out the activities of the Delete option.

To illustrate the Modify bug

1. Choose the Modify option.

As soon as you choose this option, the values for all but the Number
field of deleted customer Charles Ream appear on the screen, and the
program acts as if you can update a deleted record. The cursor moves
to the First Name field on the form and waits for you to change the
existing values, as shown in Figure 4-3.

CUSTOMER: Add Query Modify Delete Exit
Delete a customer.
- -

CUSTOMER FORM

Number: []

First Name: [] Last Name: []

Company: []

Address: []
[]

City: []

State: [] Zipcode: []

Telephone: []
- -
Are you sure you want to delete this customer (y/n)?
4-6 Guide to the IBM Informix 4GL Interactive Debugger

Choosing Delete and Modify in Succession
Figure 4-3
Choosing the Delete and Modify Options in Sequence

2. Enter a sample value in the second Address field and press the
Accept key (usually ESC) to record your changes.

The message:
Row updated.

is displayed by the change_data function, and the cursor returns to
the program menu.

3. Choose the Query option and enter search criteria for Charles Ream.

The message:
No customer rows found.

is displayed, indicating that this customer is in fact no longer in the
database.

CUSTOMER: Add Query Modify Delete Exit
Modify a customer.
- -

CUSTOMER FORM

Number: []

First Name: [Charles] Last Name: [Ream]

Company: [Athletic Supplies]

Address: [41 Jordan Avenue]
[]

City: [Palo Alto]

State: [CA] Zipcode: [94304]

Telephone: [415-356-9876]
- -
Analyzing a Logical Error in the customer Program 4-7

Accessing the Debugger
Accessing the Debugger
You are now ready to use the Debugger to discover the cause of these
problems.

To access the Debugger

1. Choose the Exit option to end the program and return to the
Programmer’s Environment.

2. Choose the Debug option from the MODULE menu.

3. Select the customer program.

The Restored Environment
When the Debugger windows appear on the terminal screen, the following
information scrolls in the Command window:

Current search path:.
TERMINAL DISPLAY STATE
autotoggle on
sourcetrace on
displaystops on
exitsource on
printdelay off
timedelay source 1
timedelay command 2
source lines 9
command lines 10
(1) trace functions

execute: { dump all }

These values, with the exception of SOURCE LINES and COMMAND LINES are
restored from the customer.4db file that you created with the WRITE
command at the end of Chapter 2, “Getting Started with the Debugger,” and
modified with the WRITE TRACE command at the end of Chapter 3, “Tracing
Logic of the customer Program.”
4-8 Guide to the IBM Informix 4GL Interactive Debugger

Modifying the Environment
If you have not left the Programmer’s Environment since carrying out the
debugging steps in Chapter 2 and Chapter 3, these values are restored from
a temporary file rather than from customer.4db. The same information is
displayed whether the values are restored from a temporary file or from a
.4db file. If you left the Programmer’s Environment and did not enter the
WRITE and WRITE TRACE commands at the end of Chapter 2 and Chapter 3,
no values are saved or restored.

Reference Numbers

The specific reference numbers assigned by the Debugger to tracepoints and
breakpoints are applicable only to the current session. Although the trace-
point currently displayed in the Command window, trace functions
{ dump all }, was the second one defined in the previous chapter, where it
received a reference number of (2), it was the only one saved before exiting
from the Debugger. This tracepoint is therefore restored in the current session
with a reference number of (1).

Modifying the Environment
Before carrying out the activities in this chapter, you should reset the
SOURCETRACE parameter to the default value of OFF. You can then observe
more clearly the interaction of the program and the Debugger when break-
points are reached.

Enter the following command to turn off the activity of the SOURCETRACE
parameter:

turn off sourcetrace

Now, the Source window does not highlight each line of code as it executes.
Analyzing a Logical Error in the customer Program 4-9

The BREAK Command
The BREAK Command
The setting of breakpoints is a valuable debugging tool that allows you to
suspend execution of a program and perform diagnostic tests. You can use
the BREAK command to cause your program to suspend execution automat-
ically in any of the following situations:

■ A particular line of code executes.

■ The value of a specific variable changes.

■ A specific function executes.

■ A particular expression evaluates to TRUE.

In addition, you can qualify a breakpoint in the following ways:

■ Specify the number of times the breakpoint is reached before
execution is suspended.

■ Specify a condition that must be met before execution is suspended.

As with tracepoints, you can specify commands to execute when a break-
point is reached by placing them in braces ({ }) following the breakpoint.

When the Debugger encounters a breakpoint, it highlights the next statement
to be executed in the Source window. It also displays information in the
Command window. This information includes the name of the function, the
line number, and the name of the module at which the breakpoint was
reached, as well as the output of any optional commands you have specified.
The cursor remains in the Command window, and program execution does
not resume until you issue a command such as CONTINUE.

The following sections illustrate the options for setting breakpoints, with
examples from customer.4gl.
4-10 Guide to the IBM Informix 4GL Interactive Debugger

Breaking at a Line Number
Breaking at a Line Number
The simple format for setting a breakpoint at a line number is as follows:

BREAK lineno

When you set a breakpoint at a line number, execution stops immediately
prior to executing the line specified by the breakpoint. For example, to set a
breakpoint at line number 251:

251 INPUT p_customer.fname THRU p_customer.phone
252 WITHOUT DEFAULTS FROM sc_cust.*

you would enter the following command:

break 251

This breakpoint causes program execution to be suspended immediately
prior to executing the INPUT WITHOUT DEFAULTS statement.

Breaking at a Variable
The simple format for setting a breakpoint on a variable is as follows:

BREAK variable

To set a breakpoint on a local variable, you must either make its function the
current function by displaying it in the Source window or qualify the variable
name. For example, to set a breakpoint when the value of the local variable
exist in the query_data function changes, you can enter the following
command if query_data is the function currently displayed in the Source
window:

break exist

This breakpoint causes program execution to stop whenever the value of
exist changes from 0 (FALSE) to 1 (TRUE) or vice versa.

If query_data is not currently displayed in the Source window, you must
qualify the variable by using either of the following conventions:

break (query_data) exist

or:

break function.query_data.exist
Analyzing a Logical Error in the customer Program 4-11

Breaking at a Function
You must qualify a global variable with the GLOBAL keyword when setting
a breakpoint if there is a local variable with the same name in the function
currently displayed in the Source window. See Chapter 9, “The Debugger
Commands,” for more information on specifying the scope of reference of
variables.

Breaking at a Function
The simple format for setting a breakpoint at a function is as follows:

BREAK function

When you set a breakpoint at a function, execution is suspended as soon as
the function is entered. The Source window highlights the first executable
statement in the function. Do not use parentheses when setting a breakpoint
at a function.

To set a breakpoint when the change_data function is called, enter the
following command:

break change_data

This breakpoint causes program execution to stop when the user chooses the
Modify option and the program calls the change_data function.

Breaking If an Expression Is True
The simple format for setting a breakpoint when a particular expression
evaluates to TRUE is as follows:

BREAK IF condition

To set a breakpoint when the value of the local variable exist is set to TRUE,
you can enter the following command when query_data is the function
currently displayed in the Source window:

break if exist = TRUE

If query_data is not the current function, you must qualify the variable using
the following convention:

break if function.query_data.exist = TRUE
4-12 Guide to the IBM Informix 4GL Interactive Debugger

Specifying a Count
This breakpoint causes program execution to be suspended whenever the
value of exist is set to TRUE. You should compare this example with the one
presented previously, in the section “Breaking at a Variable” on page 4-11. In
the present example, program execution is suspended only if the value of
exist evaluates to TRUE, rather than every time the value of exist changes.

Specifying a Count
You can qualify a breakpoint by specifying the number of times you want the
condition specified in the breakpoint to occur before execution is suspended.
Use a hyphen (-) followed by a number to indicate the number of times you
want to reach the breakpoint before suspending execution.

When you specify a value for count, the Debugger decrements this value each
time it encounters the conditions set forth in the breakpoint. Program
execution stops when the value of count is 1.

For example, to modify the breakpoint presented in the previous section so
that execution is suspended the third time the value of exist evaluates to
TRUE, you would enter the following command:

break -3 if exist = TRUE

Specifying a Condition
You can qualify a breakpoint set at a line number, variable, or function by
specifying a condition that must be met for program execution to be
suspended. For example, you can modify the breakpoint presented in the
section “Breaking at a Function” on page 4-12:

break change_data

so that program execution is suspended only if the value of the global
variable p_customer.customer_num is greater than 110. To do so, you can
enter the following command:

break change_data if p_customer.customer_num > 110

This breakpoint suspends program execution if you choose to modify the
values of a previously selected customer whose customer number is greater
than 110.
Analyzing a Logical Error in the customer Program 4-13

Setting the First Breakpoint for the Current Session
Setting the First Breakpoint for the Current Session
You have seen that undesirable results occur in the customer program when
the Delete menu option is chosen two or more times in succession. The first
evidence that the program is working improperly occurs when the prompt:

Are you sure you want to delete this customer (y/n)?

appears the second time the Delete option is chosen in sequence, even
though no customer is currently displayed on the form. One way to approach
the task of debugging the program is to set a breakpoint right before this
statement executes so that you can perform some diagnostic tests. The
statement that occurs immediately prior to this prompt is line 91 in the
show_menu function:

91 IF chosen THEN

Setting a breakpoint at line 91 causes program execution to stop right before
line 91 is executed, and gives you the opportunity to experiment with a
different value for chosen.

Because the problem becomes apparent the second time Delete is chosen in
sequence, you can use the count option to cause program execution to stop
the second time the program prepares to execute line 91.

Enter the following command to suspend execution of the program the
second time the program prepares to execute line 91:

break -2 91
4-14 Guide to the IBM Informix 4GL Interactive Debugger

Setting the First Breakpoint for the Current Session
Figure 4-4 illustrates the setting of this breakpoint and the Debugger
response.

Figure 4-4
Setting the First Breakpoint

When you set a breakpoint, the Debugger assigns it a reference number and
displays this number in the Command window. Both tracepoints and break-
points are assigned the next sequential number, and no distinction is made
between them. In this example, the breakpoint is assigned the reference
number (2) because there is an existing tracepoint with the number (1).

When you set or LIST a breakpoint that includes the count option, the
Debugger displays both the original number you have specified and the
number of cycles remaining before the breakpoint executes. Because you
have not yet begun program execution with the breakpoint, the two numbers
are identical.

11 MAIN
12
13 DEFER INTERRUPT
14
15 OPEN FORM cust_form FROM "customer"
16
17 DISPLAY FORM cust_form
18
19 LET chosen = FALSE

(customer.4gl:main)

timedelay source 1
timedelay command 0
source lines 9
command lines 10
$break -2 91
(2) break show_menu:91 [customer.4gl]

original count: 2
remaining count: 2
scope function: show_menu

$

Analyzing a Logical Error in the customer Program 4-15

The DISABLE Command
The DISABLE Command
Before running the program with the breakpoint you have set, you should
disable, or turn off the activity of, the tracepoint. This allows you to observe
more clearly the interaction of the program and the Debugger when break-
points are reached.

The DISABLE command allows you to turn off the activity specified by a
tracepoint or breakpoint without removing the point itself. A disabled trace-
point or breakpoint remains defined and can be enabled, or reactivated, at a
later time.

You can refer to tracepoints or breakpoints by their reference numbers when
disabling them.

For example, you can enter the following command to disable the current
tracepoint, trace functions { dump all }:

disable 1

The Debugger confirms that the tracepoint is disabled by echoing this infor-
mation in the Command window. Figure 4-5 illustrates your command to
disable the tracepoint and the Debugger response.
4-16 Guide to the IBM Informix 4GL Interactive Debugger

Reaching the First Breakpoint
Figure 4-5
Disabling a Tracepoint

Now, when you run the customer program, the Debugger does not trace
functions as they execute or dump the values of variables as the functions
change.

Reaching the First Breakpoint
You are now ready to run the program with the breakpoint you have set.

To run the program with breakpoints

1. Enter the RUN command or press F5 to start the Debugger.

The PROGRAM menu appears.

2. Choose the Query option, and enter the search string "*Sports*" in
the Company field.

3. Press RETURN in response to the prompt:
Enter 'y' to select this customer or RETURN to view next customer:

until the information for customer Carole Sadler of Sports Spot is
displayed.

11 MAIN
12
13 DEFER INTERRUPT
14
15 OPEN FORM cust_form FROM "customer"
16
17 DISPLAY FORM cust_form
18
19 LET chosen = FALSE

(customer.4gl:main)

source lines 9
command lines 10
$break -2 91
(2) break show_menu:91 [customer.4gl]

original count: 2
remaining count: 2
scope function: show_menu

$disable 1
Disabled point(s) 1.
$

Analyzing a Logical Error in the customer Program 4-17

Reaching the First Breakpoint
4. Enter y to select this customer.

5. Choose the Delete option to remove this customer from the
database.

6. Enter y in response to the prompt:
Are you sure you want to delete this customer (y/n)?

The program executes line 91 right before it displays the second
prompt. Because the breakpoint you have set specifies that execution
is to stop immediately prior to executing this line for the second time,
there is no interruption at this point. The cursor returns to the
PROGRAM menu and waits for you to make another selection.

7. Choose the Delete option again.

Now the program prepares to execute line 91 a second time, and the
condition specified in the breakpoint is met. Program execution is
suspended. The Debugger windows redisplay is shown in
Figure 4-6.

Figure 4-6
Reaching the First Breakpoint

The Debugger highlights line 91 in the Source window. This is the next
statement to execute when operation resumes.

87
88
89 COMMAND "Delete" "Delete a customer." HELP 4
90
91 IF chosen THEN
92
93 PROMPT "Are you sure you want to ",
94 "delete this customer (y/n)? "
95 FOR CHAR answer

(customer.4gl:show_menu)

$break -2 91
(2) break show_menu:91 [customer.4gl]

original count: 2
remaining count: 2
scope function: show_menu

$disable 1
Disabled point(s) 1.
$run
Stopped in show_menu at line 91 in module "customer.4gl"
$

4-18 Guide to the IBM Informix 4GL Interactive Debugger

The PRINT Command
The Command window displays the function name, line number, and
module name at which the breakpoint occurred. The cursor is at the $
prompt, and you can enter any valid Debugger command.

The PRINT Command

The DUMP command with which you are already familiar prints the value of
local, global, and module variables in the currently executing function. The
PRINT command prints the value of an individual variable or expression in
an active function.

The PRINT command outputs the following information to the Command
window or, optionally, to a file:

■ The value of a simple program variable

■ The value of each member of a program record

■ The value of each member of a program array

■ The value of an arithmetic expression

To print the value of a variable, the function in which the variable receives its
value must be active. A function is active as long as it, or any functions called
by it, are executing.

The following sections illustrate printing the value of a variable and printing
the values of the members of a program record, with examples from the
customer program. Chapter 6, “Tracing Logic of the cust_order Program,”
provides additional examples of the PRINT command, including the use of
PRINT to display the elements of a program array.

PRINT expression

>> filename
Analyzing a Logical Error in the customer Program 4-19

Printing the Value of a Variable
Printing the Value of a Variable
To print the value of the local variable answer in the show_menu function
when show_menu is the function displayed in the Source window, enter the
following command:

print answer

If show_menu is not currently displayed in the Source window, you need to
qualify the variable name using the following convention:

print function.show_menu.answer

If the value of answer is y, the output of the PRINT command is as follows:

remaining count: 2
scope function: show_menu

$disable 1
Disabled point(s) 1.
$run
Stopped in show_menu at line 91 in module "customer.4gl"
$print answer
customer.4gl:show_menu.answer = "y"
$

Printing the Values of Record Members
To print the values of the members of the global record p_customer, enter the
following command:

print p_customer

If the active customer is Arnold Sipes, the following output of the PRINT
command scrolls through the Command window:

global:p_customer = record
customer_num = 117
fname = "Arnold "
lname = "Sipes "
company = "Kids Korner "
address1 = "850 Lytton Court "
address2 = (null)
city = "Redwood City "
state = "CA"
zipcode = "94063"
phone = "415-245-4578 "

end record
4-20 Guide to the IBM Informix 4GL Interactive Debugger

Entering the PRINT Command
Entering the PRINT Command
Enter the PRINT command as follows to display the current value of chosen:

print chosen

The output of the PRINT command indicates that the current value of chosen
is 1, or TRUE, as shown in Figure 4-7.

Figure 4-7
Printing the Value of chosen

87
88
89 COMMAND "Delete" "Delete a customer." HELP 4
90
91 IF chosen THEN
92
93 PROMPT "Are you sure you want to ",
94 "delete this customer (y/n)? "
95 FOR CHAR answer

(customer.4gl:show_menu)

original count: 2
remaining count: 2
scope function: show_menu

$disable 1
Disabled point(s) 1.
$run
Stopped in show_menu at line 91 in module "customer.4gl"
$print chosen
global:chosen = 1
$

Analyzing a Logical Error in the customer Program 4-21

The LET Command
The LET Command
You can use the LET command as you would in 4GL to assign a value to a
variable. Using the LET command in the Debugger allows you to change the
value of a variable while operation is suspended and to continue running the
program with the new value.

In the present example, you have seen that a prompt displays incorrectly if
you choose the Delete option twice in succession. You know also that this
prompt displays when the value of the variable chosen is TRUE. The variable
chosen is a flag with the possible values of TRUE or FALSE. A logical
debugging step, therefore, is to change the value of chosen to FALSE and
observe the behavior of the program with the new value.

Enter the LET command as follows to change the value of chosen to FALSE:

let chosen = false

Figure 4-8
Changing the Value of chosen

87
88
89 COMMAND "Delete" "Delete a customer." HELP 4
90
91 IF chosen THEN
92
93 PROMPT "Are you sure you want to ",
94 "delete this customer (y/n)? "
95 FOR CHAR answer

(customer.4gl:show_menu)

(2) break show_menu:91 [customer.4gl]
original count: 2
remaining count: 2
scope function: show_menu

$run
Stopped in show_menu at line 91 in module "customer.4gl"
$print chosen
global:chosen = 1
$let chosen = false
$

4-22 Guide to the IBM Informix 4GL Interactive Debugger

The STEP Command
The STEP Command
At this point, you could resume program execution using the CONTINUE
command. Entering CONTINUE would cause the Debugger to resume
executing the program with the value of chosen set to FALSE and would
allow you to observe the functioning of the program with the new value.

An alternative approach is to use the STEP command to execute one or more
individual 4GL statements. The simple format of the STEP command is as
follows:

STEP n

where n specifies the number of statements you want to execute. If no value
is specified for n, the Debugger executes the next statement.

To execute the next statement, you can either enter:

step

or press F2. To execute the next five statements, you would enter:

step 5

When you enter the STEP command, the Debugger executes the statement or
series of statements you have specified, and then returns control to you. The
Command window displays the function name, the line number, and the
name of the module at which execution was suspended following the step.

Chapter 6 provides additional examples of the STEP command. See Chapter 9
for a complete description of the STEP command and its options.

Entering the STEP Command
It is convenient to use STEP in the present example because you are interested
in observing the next statement that the Debugger prepares to execute after
the value of chosen in line 91 is changed to FALSE.

Enter the STEP command or press F2 to tell the Debugger to execute the
statement currently highlighted in the Command window:

91 IF chosen THEN
Analyzing a Logical Error in the customer Program 4-23

Entering the STEP Command
Figure 4-9 illustrates the appearance of the Debugger windows immediately
following execution of this command.

Figure 4-9
Output from the STEP command

The Debugger now highlights the next statement to be executed in the Source
window. This statement is line 105 in the show_menu function. It displays
the message that no customer has been chosen and instructs you to use the
Query option to select one. This is the message that the program displays
automatically the first time the user attempts to use the Delete option
without previously selecting a customer. The Command window displays
the information that execution stopped at this statement.

This series of debugging steps suggests that the problems with customer.4gl
can be corrected by setting the value of chosen to FALSE upon return from the
delete_row function. If the value of chosen is set to FALSE at this point in the
program, the ELSE condition following line 103 executes whenever you have
failed to select a customer instead of only the first time.

101 END IF
102
103 ELSE
104
105 MESSAGE "No customer has been chosen. ",
106 "Use the Query option to select ",
107 "a customer."
108
109 NEXT OPTION "Query"

(customer.4gl:show_menu)

$let chosen = false
$step
Stopped in show_menu at line 105 in module "customer.4gl"
$

4-24 Guide to the IBM Informix 4GL Interactive Debugger

The NOBREAK Command
The NOBREAK Command
You can use the NOBREAK command to permanently remove a breakpoint.
In the present example, it is desirable to remove the current breakpoint,
break -2 91, before continuing with the debugging steps in this chapter.
Because the current value of count is 1, this breakpoint now suspends
execution every time the program prepares to execute line 91 unless removed
or disabled.

You can refer to breakpoints by their reference numbers when removing
them. For example, you can enter the following command to remove the
breakpoint with the reference number (2), break -2 91:

nobreak 2

Now the Debugger does not suspend program execution immediately prior
to executing line 91.

Setting the Second Breakpoint for the
Current Session
You can determine that failing to reset chosen to FALSE following the return
from the delete_row function is responsible for the second problem detected
with the program. You recall that choosing the Modify option immediately
after a deletion causes the values First Name field through Phone field for the
deleted customer to appear on the screen. It appears that you can modify the
deleted row. Because the program calls the change_data function under the
same condition that it calls delete_row (whenever the value of chosen is
TRUE), you can use a similar series of debugging steps as in the previous
example. Specifically, the debugging strategy is as follows:

1. Set a breakpoint at line 74 in the show_menu function:
74 IF chosen THEN

2. Use the LET command to reset the value of chosen to FALSE.

3. Use the STEP command to execute line 74 with the new value.
Analyzing a Logical Error in the customer Program 4-25

Setting the Second Breakpoint for the Current Session
Because you are reasonably sure of the steps you want to take when the
breakpoint is reached, you can save time by combining these commands.
Specifically, you can specify LET and STEP between the curly braces as
commands to execute when the breakpoint is reached. Enter the second
breakpoint as follows:

break 74 {let chosen = false;step}

When you use the braces to specify multiple commands for the Debugger to
execute upon reaching a breakpoint, the commands must be separated with
semicolons. If your commands span more than one line, you can continue
making your entry on additional lines. A > prompt appears if you press
RETURN before terminating your entry with the right brace symbol (}).

The Debugger does not execute a RUN, CONTINUE, or STEP command until
it has processed all other commands in the sequence. Other commands
execute in the order in which they appear.

Figure 4-10 illustrates your setting of the second breakpoint and the
Debugger response.

Figure 4-10
Specifying Commands with a Breakpoint

101 END IF
102
103 ELSE
104
105 MESSAGE "No customer has been chosen. ",
106 "Use the Query option to select ",
107 "a customer."
108
109 NEXT OPTION "Query"

(customer.4gl:show_menu)

$let chosen = false
$step
Stopped in show_menu at line 105 in module "customer.4gl"
$nobreak 2
Removed point(s) 2.
$break 74 {let chosen = false;step}
(2) break show_menu:74 [customer.4gl]

execute: {let chosen = false;step}
scope function: show_menu

$

4-26 Guide to the IBM Informix 4GL Interactive Debugger

Reaching the Second Breakpoint
Observe that the Debugger assigns the new breakpoint a reference number of
(2) because you have removed the previous point with this number.

Reaching the Second Breakpoint
The following procedure describes how to resume execution of the program
and observe the activity of the second breakpoint.

To reach the second breakpoint

1. Enter the CONTINUE command or press F4.

2. Choose the Query option, enter the search criterion for customers
with zip code "94062" and press ESC.

3. Press RETURN, if necessary, in response to the prompt until the record
for customer Roy Jaeger is displayed.

4. Enter y to select this customer.

5. Choose the Delete option to remove this customer from the
database.

6. Enter y in response to the prompt to carry out the deletion.

7. Choose the Modify option.

As soon as you choose the Modify option, the program prepares to execute
line 74. Because you have set a breakpoint at this line, program execution is
suspended. The Debugger then automatically resets the value of chosen and
steps to the next executable statement with the new value. Figure 4-11 illus-
trates the appearance of the Debugger windows after the breakpoint has been
reached and after both the LET and the STEP statements have executed.
Analyzing a Logical Error in the customer Program 4-27

Reaching the Second Breakpoint
Figure 4-11
Reaching the Second Breakpoint

The Source window highlights the next statement to be executed after you
have stepped through line 74. You observe that this is line 80, which correctly
displays the message that no customer has been selected.

The Debugger generates two lines of output to the Command window. The
first line:

Stopped in show_menu at line 74 in module "customer.4gl"

was generated by the BREAK command when the breakpoint was reached.

The second line:

Stopped in show_menu at line 80 in module "customer.4gl"

was generated by the STEP command after you used it to execute line 74.

You have learned from these debugging steps, therefore, that the value of
chosen must be reset to FALSE following the return from delete_row.
“Correcting the customer Program” on page 4-31 provides instructions for
making the necessary change.

72 COMMAND "Modify" "Modify a customer." HELP 3
73
74 IF chosen THEN
75
76 CALL change_data()
77
78 ELSE
79
80 MESSAGE "No customer has been chosen. ",

(customer.4gl:show_menu)

$nobreak 2
Removed point(s) 2.
$break 74 {let chosen = false;step}
(2) break show_menu:74 [customer.4gl]

execute: {let chosen = false;step}
scope function: show_menu

$continue
Stopped in show_menu at line 74 in module "customer.4gl"
Stopped in show_menu at line 80 in module "customer.4gl"
$

4-28 Guide to the IBM Informix 4GL Interactive Debugger

Saving and Exiting
Saving and Exiting
This chapter concludes the examples based on the program customer.4gl. In
the course of working with the program, you have created and modified the
contents of a file called customer.4db, which the Debugger uses to restore the
debugging environment for this program. The contents of this file are
currently as follows:

alias f1 = help
alias f2 = step
alias f3 = step into
alias f4 = continue
alias f5 = run
alias f6 = list break trace
alias f7 = list
alias f8 = dump
alias f9 = exit
use = .
turn on autotoggle
turn on sourcetrace
turn on displaystops
turn on exitsource
turn off printdelay
timedelay source 1
timedelay command 0
list display
trace functions { dump all }

You observe that SOURCETRACE is saved in this file with a value of ON, even
though you have turned SOURCETRACE OFF for the current session. To save
the current value of SOURCETRACE, you would need to issue the WRITE
command with the DISPLAY option. In this example, WRITE DISPLAY would
append the current values of all the terminal display parameters to the
customer.4db file. To save the current breakpoint as part of this file, you can
use the WRITE command with the option BREAK.
Analyzing a Logical Error in the customer Program 4-29

Saving and Exiting
To save the breakpoint as part of the file

1. Enter the following command to save the current breakpoint,
break 74 {let chosen = false;step}:

write break

The contents of the customer.4db file are modified as follows:
alias f1 = help
alias f2 = step
alias f3 = step into
alias f4 = continue
alias f5 = run
alias f6 = list break trace
alias f7 = list
alias f8 = dump
alias f9 = exit
use = .
turn on autotoggle
turn on sourcetrace
turn on displaystops
turn on exitsource
turn off printdelay
timedelay source 1
timedelay command 0
list display
trace functions { dump all }
break 74 { let chosen = false ; step }

2. Enter the EXIT command or press F9 to exit from the Debugger and
return to the Programmer’s Environment.
4-30 Guide to the IBM Informix 4GL Interactive Debugger

Correcting the customer Program
Correcting the customer Program
You have determined that in order for the program to work correctly, the
value of the chosen variable needs to be reset to FALSE following the return
from delete_row. The proper placement of this statement is in the
show_menu function immediately following line 99:

99 CALL delete_row()

To make this correction to the program from the Programmer’s Environment

1. Choose the Modify option from the MODULE menu.

2. Select the customer program.

3. Use the system editor to move to line 99 of this module:
99 CALL delete_row()

4. Insert the following line immediately after line 99:
LET chosen = FALSE

5. Save the file using the command appropriate to your system editor.

6. Choose the Compile option from the MODIFY MODULE menu.

7. Choose the Runable option from the COMPILE MODULE menu.

You should see the following message when compilation is
complete:

A module was successfully compiled.

If errors are discovered during the compilation, you should return to
the MODULE menu and choose the Modify option to correct the
module.

Following is a complete listing of the show_menu function with this
correction:

FUNCTION show_menu()

DEFINE answer CHAR(1)

MESSAGE "Type the first letter of the option ",
"you want to select or CONTROL I for Help."

MENU "CUSTOMER"
Analyzing a Logical Error in the customer Program 4-31

Correcting the customer Program
COMMAND "Add" "Add a new customer." HELP 1

LET answer = "y"

WHILE answer = "y"

CALL enter_row()

PROMPT "Do you want to ",
"enter another row (y/n) ? "
FOR CHAR answer

END WHILE

CLEAR FORM

COMMAND "Query" "Search for a customer." HELP 2

CALL query_data()

IF chosen THEN

NEXT OPTION "Modify"

END IF

COMMAND "Modify" "Modify a customer." HELP 3

IF chosen THEN

CALL change_data()

ELSE

MESSAGE "No customer has been chosen. ",
"Use the Query option to select ",
"a customer."

NEXT OPTION "Query"

END IF

COMMAND "Delete" "Delete a customer." HELP 4

IF chosen THEN

PROMPT "Are you sure you want to ",
"delete this customer (y/n)? "
FOR CHAR answer

IF answer = "y" THEN

CALL delete_row()
4-32 Guide to the IBM Informix 4GL Interactive Debugger

Correcting the customer Program
LET chosen = FALSE

END IF

ELSE

MESSAGE "No customer has been chosen. ",
"Use the Query option to select ",
"a customer."

NEXT OPTION "Query"

END IF

COMMAND "Exit" "Leave the CUSTOMER menu." HELP 5

EXIT MENU

END MENU

END FUNCTION

A breakpoint is a valuable debugging tool that allows you to suspend
operation of your program under preset conditions. These conditions include
when a particular statement or function executes, or when the value of a
variable changes. The Source window highlights the next statement to
execute when operation resumes. The Command window records the
function name, line number, and module name where the breakpoint
occurred.

While execution is suspended, you can perform diagnostic tests such as
printing the current values of variables or changing the value of a variable
and stepping to the next statement with the new value.

Tracepoints and breakpoints can be disabled, or deactivated, for a particular
series of steps, or they can be removed entirely.
Analyzing a Logical Error in the customer Program 4-33

5
Chapter
A Multi-Module Program:
cust_order
In This Chapter . 5-3

The cust_order Program 5-4
MODULE #1: globals.4gl 5-5
MODULE #2: main.4gl 5-6
MODULE #3: order.4gl 5-10

Defining and Compiling the Program 5-15
Compiling the Program 5-17

Working with Multi-Module Programs 5-18

Viewing a Module in the Source Window 5-19
Viewing a Function in a Different Module 5-21
Searching the Current Module 5-22
Setting Tracepoints or Breakpoints at a Line Number. 5-22

Module Variables 5-23
Setting Tracepoints or Breakpoints on Module Variables 5-23
Module Variables and the DUMP Command 5-24

5-2 Guid
e to the IBM Informix 4GL Interactive Debugger

In This Chapter
You are now familiar with the basic operation of the Debugger and with the
principal tools available to you for tracing program logic and for verifying
the operation of INFORMIX-4GL programs. This chapter introduces a program
of greater complexity than the one used in the previous examples and
summarizes the points that you need to be aware of when working with
multi-module programs.

When compiled and run, the sample program produces two common
runtime errors. Chapter 6, “Tracing Logic of the cust_order Program,”
introduces additional commands and capabilities of the Debugger, using
aspects of the program that are working correctly. Chapter 7, “Analyzing
Runtime Errors in the cust_order Program,” illustrates the use of the
Debugger to diagnose the cause of fatal errors and provides instructions for
correcting them.

This chapter uses examples based on the cust_order.4gi program that is
produced when you compile the following modules:

■ globals.4gl

■ main.4gl

■ order.4gl
A Multi-Module Program: cust_order 5-3

The cust_order Program
This chapter assumes that you are familiar with more advanced 4GL
statement syntax, including the INPUT ARRAY and DISPLAY ARRAY
statements, the window management statements, and the use of scrolling
cursors. The following topics are covered in this chapter:

■ How to define and compile the cust_order program

■ How to use the VIEW command to display a program module in the
Source window

■ How to set a tracepoint or breakpoint at a line number in a module

■ How to set a tracepoint or breakpoint on a module variable

The examples in this chapter are based on the following modules and forms
provided with the demonstration database:

■ globals.4gl

■ main.4gl

■ order.4gl

■ orderform.per

■ stock_sel.per

The cust_order Program
In “Defining and Compiling the Program” on page 5-15, you use the
Programmer’s Environment to define and compile the cust_order program.
When compiled, this program allows the user to place an order for a
customer and to enter up to 10 items in the order. A second activity, that of
finding and displaying existing orders, is anticipated by the program but is
not currently implemented.

The purpose of the cust_order program is to give you additional practice
with the Debugger using a program of moderate complexity. In an appli-
cation program designed for actual use, you would probably want to
implement Find-Order and perhaps other options, and provide more
thorough checking for data integrity.
5-4 Guide to the IBM Informix 4GL Interactive Debugger

MODULE #1: globals.4gl
The three component modules of the cust_order program appear on the
following pages and are followed by brief explanatory notes on each module.
These modules are similar, though not identical, to several of the modules
that make up the d4_demo.4gi program provided with the Rapid Devel-
opment System demonstration database.

A complete description of the functions defined in these modules is provided
in Appendix C, “Sample Programs.” Consult Appendix C if you would like
more information on the program after studying the example.

MODULE #1: globals.4gl
The following code constitutes the globals.4gl module:

1 DATABASE stores7
2
3 GLOBALS
4 DEFINE
5 p_customer RECORD LIKE customer.*,
6 p_orders RECORD
7 order_num LIKE orders.order_num,
8 order_date LIKE orders.order_date,
9 po_num LIKE orders.po_num,

10 ship_instruct LIKE orders.ship_instruct
11 END RECORD,
12 p_items ARRAY[10] OF RECORD
13 item_num LIKE items.item_num,
14 stock_num LIKE items.stock_num,
15 manu_code LIKE items.manu_code,
16 description LIKE stock.description,
17 quantity LIKE items.quantity,
18 unit_price LIKE stock.unit_price,
19 total_price LIKE items.total_price
20 END RECORD,
21 p_stock ARRAY[15] OF RECORD
22 stock_num LIKE stock.stock_num,
23 manu_code LIKE manufact.manu_code,
24 manu_name LIKE manufact.manu_name,
25 description LIKE stock.description,
26 unit_price LIKE stock.unit_price,
27 unit_descr LIKE stock.unit_descr
28 END RECORD,
29 stock_cnt INTEGER
30 END GLOBALS
A Multi-Module Program: cust_order 5-5

MODULE #2: main.4gl
The globals file defines two program records, two program arrays, and
a variable to serve as a counter:

■ The p_customer record is defined with variables corresponding to all
the columns of the customer table.

■ The p_orders record is defined with variables corresponding to four
of the columns of the orders table.

■ The p_items program array is defined as an array of 10 records with
variables corresponding to five of the columns of the items table and
two of the columns of the stock table.

■ The p_stock program array is defined as an array of 15 records with
variables corresponding to four of the columns of the stock table and
the two columns of the manufact table.

■ The stock_cnt variable is a counter that keeps track of the number of
rows retrieved from the database into the p_stock array.

MODULE #2: main.4gl
The following code constitutes the main.4gl module:

1 GLOBALS
2 "globals.4gl"
3
4
5 MAIN
6
7 DEFER INTERRUPT
8
9 OPEN FORM order_form FROM "orderform"
10 DISPLAY FORM order_form
11 ATTRIBUTE(MAGENTA)
12 MENU "ORDERS"
13 COMMAND "Add-order"
14 "Enter new order to database"
15 CALL add_order()
16 COMMAND "Find-order" "Look up and display orders"
17 CALL find_order()
18 COMMAND "Exit" "Exit program and return to operating system"
19 CLEAR SCREEN
20 EXIT PROGRAM
21 END MENU
22
23 END MAIN
24
25
26
27 FUNCTION mess(str, mrow)
28 DEFINE str CHAR(80),
29 mrow SMALLINT
5-6 Guide to the IBM Informix 4GL Interactive Debugger

MODULE #2: main.4gl
30
31 DISPLAY " ", str CLIPPED AT mrow,1
32 SLEEP 3
33 DISPLAY "" AT mrow,1
34 END FUNCTION
35
36
37 FUNCTION clear_menu()
38
39 DISPLAY "" AT 1,1
40 DISPLAY "" AT 2,1
41 END FUNCTION
42
43
44
45
46 FUNCTION fetch_stock()
47
48 DECLARE stock_list CURSOR FOR
49 SELECT stock_num, manufact.manu_code,
50 manu_name, description, unit_price, unit_descr
51 FROM stock, manufact
52 WHERE stock.manu_code = manufact.manu_code
53 ORDER BY stock_num
54 LET stock_cnt = 1
55 FOREACH stock_list INTO p_stock[stock_cnt].*
56 LET stock_cnt = stock_cnt + 1
57 END FOREACH
58 LET stock_cnt = stock_cnt - 1
59 END FUNCTION
60
61 FUNCTION query_customer()
62 DEFINE where_part CHAR(200),
63 query_text CHAR(250),
64 answer CHAR(1),
65 mrow, chosen, exist SMALLINT
66
67 CLEAR FORM
68 CALL clear_menu()
69
70 MESSAGE "Enter criteria for selection"
71 CONSTRUCT where_part ON customer.* FROM customer.*
72 MESSAGE ""
73 IF int_flag THEN
74 LET int_flag = FALSE
75 CLEAR FORM
76 ERROR "Customer query aborted" ATTRIBUTE(RED, REVERSE)
77 LET p_customer.customer_num = NULL
78 RETURN (p_customer.customer_num)
79 END IF
80 LET query_text = "select * from customer where ", where_part CLIPPED,
81 " order by lname"
82 PREPARE statement_1 FROM query_text
83 DECLARE customer_set SCROLL CURSOR FOR statement_1
84
85 OPEN customer_set
86 FETCH FIRST customer_set INTO p_customer.*
87 IF status = NOTFOUND THEN
88 LET exist = FALSE
89 ELSE
90 LET exist = TRUE
A Multi-Module Program: cust_order 5-7

MODULE #2: main.4gl
91 DISPLAY BY NAME p_customer.* ATTRIBUTE(MAGENTA)
92 MENU "BROWSE"
93 COMMAND "Next" "View the next customer in the list"
94 FETCH NEXT customer_set INTO p_customer.*
95 IF status = NOTFOUND THEN
96 ERROR "No more customers in this direction"
97 ATTRIBUTE(RED, REVERSE)
98 FETCH LAST customer_set INTO p_customer.*
99 END IF
100 DISPLAY BY NAME p_customer.* ATTRIBUTE(MAGENTA)
101 COMMAND "Previous" "View the previous customer in the list"
102 FETCH PREVIOUS customer_set INTO p_customer.*
103 IF status = NOTFOUND THEN
104 ERROR "No more customers in this direction"
105 ATTRIBUTE(RED, REVERSE)
106 FETCH FIRST customer_set INTO p_customer.*
107 END IF
108 DISPLAY BY NAME p_customer.* ATTRIBUTE(MAGENTA)
109 COMMAND "First" "View the first customer in the list"
110 FETCH FIRST customer_set INTO p_customer.*
111 DISPLAY BY NAME p_customer.* ATTRIBUTE(MAGENTA)
112 COMMAND "Last" "View the last customer in the list"
113 FETCH LAST customer_set INTO p_customer.*
114 DISPLAY BY NAME p_customer.* ATTRIBUTE(MAGENTA)
115 COMMAND "Select" "Exit BROWSE selecting the current customer"
116 LET chosen = TRUE
117 EXIT MENU
118 COMMAND "Quit" "Quit BROWSE without selecting a customer"
119 LET chosen = FALSE
120 EXIT MENU
121 END MENU
122 END IF
123 CLOSE customer_set
124
125 CALL clear_menu()
126 IF NOT exist THEN
127 CLEAR FORM
128 CALL mess("No customer satisfies query", mrow)
129 LET p_customer.customer_num = NULL
130 RETURN (FALSE)
131 END IF
132 IF NOT chosen THEN
133 CLEAR FORM
134 CALL mess("No selection made", mrow)
135 LET p_customer.customer_num = NULL
136 RETURN (FALSE)
137 END IF
138 RETURN (TRUE)
139 END FUNCTION
5-8 Guide to the IBM Informix 4GL Interactive Debugger

MODULE #2: main.4gl
The main module references the globals file with the GLOBALS statement.
It consists of the MAIN block and of four functions:

■ The MAIN section issues the DEFER INTERRUPT command, opens
and displays the orderform screen form, and presents the program
menu. The user can choose to add a new order for a customer or to
look up existing orders. The second of these activities is anticipated
but not yet implemented.

■ The mess function displays a character string at a particular row in
the first column of the screen. It receives the character string and the
number of the row as parameters.

■ The clear_menu function uses DISPLAY "" statements to clear the first
two lines of the terminal screen.

■ The fetch_stock function declares the cursor stock_list and retrieves
rows into the p_stock program array by means of a FOREACH loop.
It uses the global variable stock_cnt as a counter for the rows
retrieved.

■ The query_customer function uses a CONSTRUCT statement to
perform a query by example and declares the scrolling cursor
customer_set. It then opens this cursor and fetches the resulting
rows into the p_customer program record. The function displays a
menu that allows you to select the next, previous, first, or last
customer in the active set. It returns a value of FALSE (0) to the calling
function if no customer is found or selected and a value of TRUE (1)
if a customer is both found and selected. If the user presses the
Interrupt key during the CONSTRUCT statement, the function sets
the value of the _p_customer.customer_num to NULL and returns
this value to the calling function.
A Multi-Module Program: cust_order 5-9

MODULE #3: order.4gl
MODULE #3: order.4gl
The following code constitutes the order.4gl module:

1 GLOBALS
2 "globals.4gl"
3
4 DEFINE query_stat INTEGER
5
6
7 FUNCTION add_order()
8 DEFINE pa_curr, s_curr INTEGER
9
10 LET query_stat = query_customer()
11 IF query_stat IS NULL OR query_stat = 0 THEN
12 RETURN
13 END IF
14 DISPLAY by name p_customer.* ATTRIBUTE(CYAN)
15
16 MESSAGE "Enter the order date, PO number and shipping instructions."
17 INPUT BY NAME p_orders.order_date, p_orders.po_num,
18 p_orders.ship_instruct
19 IF int_flag THEN
20 LET int_flag = FALSE
21 CLEAR FORM
22 ERROR "Order input aborted" ATTRIBUTE (RED, REVERSE)
23 RETURN
24 END IF
25 INPUT ARRAY p_items FROM s_items.*
26 BEFORE FIELD stock_num
27 MESSAGE "Press ESC to write order"
28 DISPLAY "Enter a stock number or press CTRL-B to scan stock list"
29 AT 1,1
30 BEFORE FIELD manu_code
31 MESSAGE "Press ESC to write order"
32 DISPLAY "" AT 1, 1
33 DISPLAY "Enter a manufacturer code or press CTRL-B to scan ",
34 "stock list" at 1, 1
35
36 BEFORE FIELD quantity
37 MESSAGE "Press ESC to write order"
38 DISPLAY "" AT 1,1
39 DISPLAY "Enter the item quantity" AT 1, 1
40 ON KEY (CONTROL-B)
41 IF INFIELD(stock_num) OR INFIELD(manu_code) THEN
42 LET pa_curr = arr_curr()
43 LET s_curr = scr_line()
44 CALL fetch_stock()
45 CALL get_stock() RETURNING
46 p_items[pa_curr].stock_num, p_items[pa_curr].manu_code,
47 p_items[pa_curr].description, p_items[pa_curr].unit_price
48 DISPLAY p_items[pa_curr].stock_num
49 TO s_items[s_curr].stock_num
50 DISPLAY p_items[pa_curr].manu_code
51 TO s_items[s_curr].manu_code
52 DISPLAY p_items[pa_curr].description
53 TO s_items[s_curr].description
54 DISPLAY p_items[pa_curr].unit_price
55 TO s_items[s_curr].unit_price
56 NEXT FIELD quantity
5-10 Guide to the IBM Informix 4GL Interactive Debugger

MODULE #3: order.4gl
57 END IF
58 AFTER FIELD stock_num, manu_code
59 LET pa_curr = arr_curr()
60 IF p_items[pa_curr].stock_num IS NOT NULL
61 AND p_items[pa_curr].manu_code IS NOT NULL
62 THEN
63 CALL get_item()
64 END IF
65
66 AFTER FIELD quantity
67 MESSAGE ""
68 LET pa_curr = arr_curr()
69 IF p_items[pa_curr].unit_price IS NOT NULL
70 AND p_items[pa_curr].quantity IS NOT NULL
71 THEN
72 CALL item_total()
73 ELSE
74 ERROR "A valid stock code, manufacturer, and ",
75 "quantity must all be entered" ATTRIBUTE (RED, REVERSE)
76 NEXT FIELD stock_num
77 END IF
78 AFTER INSERT, DELETE
79 CALL renum_items()
80 CALL order_total()
81 AFTER ROW
82 CALL order_total()
83 END INPUT
84
85 IF int_flag THEN
86 LET int_flag = FALSE
87 CLEAR FORM
88 ERROR "Order input aborted" ATTRIBUTE (RED, REVERSE)
89 RETURN
90 END IF
91
92 CALL insert_order()
93 END FUNCTION
94
95 FUNCTION insert_order()
96 WHENEVER ERROR CONTINUE
97 BEGIN WORK
98 INSERT INTO orders (order_num, order_date, customer_num,
99 ship_instruct, po_num)
100 VALUES (0, p_orders.order_date, p_customer.customer_num,
101 p_orders.ship_instruct, p_orders.po_num)
102 IF status < 0 THEN
103 ROLLBACK WORK
104 ERROR "Unable to complete update of orders table"
105 ATTRIBUTE(RED, REVERSE, BLINK)
106 RETURN
107 END IF
108 LET p_orders.order_num = SQLCA.SQLERRD[2]
109 DISPLAY BY NAME p_orders.order_num
110 IF NOT insert_items() THEN
111 ROLLBACK WORK
112 ERROR "Unable to insert items" ATTRIBUTE(RED, REVERSE, BLINK)
113 RETURN
114 END IF
115 COMMIT WORK
116 WHENEVER ERROR STOP
117 CALL mess("Order added", 23)
A Multi-Module Program: cust_order 5-11

MODULE #3: order.4gl
118 CLEAR FORM
119 END FUNCTION
120
121
122 FUNCTION order_total()
123 DEFINE order_total MONEY(8),
124 i INTEGER
125
126 LET order_total = 0.00
127 FOR i = 1 TO arr_count()
128 IF p_items[i].total_price IS NOT NULL THEN
129 LET order_total = order_total + p_items[i].total_price
130 END IF
131 END FOR
132 LET order_total = 1.1 * order_total
133 DISPLAY order_total TO t_price ATTRIBUTE (GREEN)
134 END FUNCTION
135
136
137 FUNCTION item_total()
138 DEFINE pa_curr, sc_curr INTEGER
139
140 LET pa_curr = arr_curr()
141 LET sc_curr = scr_line()
142 LET p_items[pa_curr].total_price =
143 p_items[pa_curr].quantity * p_items[pa_curr].unit_price
144 DISPLAY p_items[pa_curr].total_price TO s_items[sc_curr].total_price
145 END FUNCTION
146
147
148 FUNCTION renum_items()
149 DEFINE pa_curr, pa_total, sc_curr, sc_total, k INTEGER
150
151 LET pa_curr = arr_curr()
152 LET pa_total = arr_count()
153 LET sc_curr = scr_line()
154 LET sc_total = 4
155 FOR k = pa_curr TO pa_total
156 LET p_items[k].item_num = k
157 IF sc_curr <= sc_total THEN
158 DISPLAY k TO s_items[sc_curr].item_num
159 LET sc_curr = sc_curr + 1
160 END IF
161 END FOR
162 END FUNCTION
163
164
165 FUNCTION insert_items()
166 DEFINE idx INTEGER
167
168 FOR idx = 1 TO arr_count()
169 IF p_items[idx].quantity != 0 THEN
170 INSERT INTO items
171 VALUES (p_items[idx].item_num, p_orders.order_num,
172 p_items[idx].stock_num, p_items[idx].manu_code,
173 p_items[idx].quantity, p_items[idx].total_price)
174 IF status < 0 THEN
175 RETURN (FALSE)
176 END IF
177 END IF
178 END FOR
5-12 Guide to the IBM Informix 4GL Interactive Debugger

MODULE #3: order.4gl
179 RETURN (TRUE)
180 END FUNCTION
181
182
183 FUNCTION get_stock()
184 DEFINE idx integer
185
186 OPEN WINDOW stock_w AT 7, 3
187 WITH FORM "stock_sel"
188 ATTRIBUTE(BORDER, YELLOW)
189 CALL set_count(stock_cnt)
190 DISPLAY " Use cursor using F3, F4, and arrow keys; press ESC ",
191 "to select a stock item" AT 1,1
192 DISPLAY ARRAY p_stock TO s_stock.*
193 LET idx = arr_curr()
194 CLOSE WINDOW stock_w
195 RETURN p_stock[idx].stock_num, p_stock[idx].manu_code,
196 p_stock[idx].description, p_stock[idx].unit_price
197 END FUNCTION
198
199
200 FUNCTION get_item()
201 DEFINE pa_curr, sc_curr INTEGER
202
203 LET pa_curr = arr_curr()
204 LET sc_curr = scr_line()
205 SELECT description, unit_price
206 INTO p_items[pa_curr].description,
207 p_items[pa_curr].unit_price
208 FROM stock
209 WHERE stock.stock_num = p_items[pa_curr].stock_num
210 AND stock.manu_code = p_items[pa_curr].manu_code
211 IF status THEN
212 LET p_items[pa_curr].description = NULL
213 LET p_items[pa_curr].unit_price = NULL
214 END IF
215 DISPLAY p_items[pa_curr].description, p_items[pa_curr].unit_price
216 TO s_items[sc_curr].description, s_items[sc_curr].unit_price
217 IF p_items[pa_curr].quantity IS NOT NULL THEN
218 CALL item_total()
219 END IF
220 END FUNCTION
221
222
223 FUNCTION find_order()
224 ERROR "Function not yet implemented"
225 SLEEP 3
226 RETURN
227 END FUNCTION
A Multi-Module Program: cust_order 5-13

MODULE #3: order.4gl
The order module references the globals file with the GLOBALS statement
and defines a module variable, query_stat. It consists of nine functions that
collect, manipulate, and insert the order data:

■ The add_order function calls the query_customer function and
determines whether or not the user has selected a customer. If there
is an active customer, it assigns values to three of the four variables
of the p_orders program record, from the data values entered by the
user into the order_date, po_num, and ship_instruct fields. It then
allows the user to place up to 10 items in the order. Four items can be
displayed on the screen at one time. The user can press CTRL-B while
the cursor is in either the stock_num or the manu_code field to see a
list of available stock items and select an item directly from the list
presented.

■ The insert_order function is called from the add_order function to
perform a transaction that adds an order to the database.

■ The order_total function is called from the add_order function to
add the values in the total_price column of the p_items program
array and to display the sum on the screen form.

■ The item_total function is called from the add_order function or the
get_item function to compute and display a total price for the
current item (the current row of the p_items program array).

■ The renum_items function is called from the add_order function to
renumber the items in the program array and the screen array if the
user adds or deletes a row in the screen array.

■ The insert_items function is called from the insert_order function to
add rows to the items table. Each row contains an order number
(p_orders.order_num) and values from the p_items program array.
The insert_items function returns a value to the calling function to
indicate whether the rows were successfully added.

■ The get_stock function displays the stock list retrieved by the
fetch_stock function within a window on the screen form. When the
user presses ESC to select an item from the list, the function returns
the item values in the current row of the p_stock program array.
5-14 Guide to the IBM Informix 4GL Interactive Debugger

Defining and Compiling the Program
■ If the user enters a stock number and manufacturer code, the
get_item function is called from the add_order function to look up
and display a description and unit price for the corresponding item.
If the user has also entered a quantity, the get_item function calls
item_total to compute and display a total item price.

■ The find_order function displays the message that the function is not
yet implemented.

Defining and Compiling the Program
This section shows you how to define and compile the cust_order program
from the Programmer’s Environment.

You should first compile the two screen forms required by the program,
orderform.per and stock_sel.per.

To compile the screen forms from the Programmer’s Environment

1. Enter r4gl at the system prompt to access the INFORMIX-4GL menu.

2. Choose the Form option.

3. Choose the Compile option from the FORM menu.

4. Select the orderform form.

The message is displayed while the form compiles:
Form compilation in progress...please wait.

5. Repeat the compilation process for the stock_sel form.

6. Choose the Exit option when finished to return to the
INFORMIX-4GL menu.

To define the cust_order program from the Programmer’s Environment

1. Choose the Program option from the INFORMIX-4GL menu.

2. Choose the New option from the PROGRAM menu.
A Multi-Module Program: cust_order 5-15

Defining and Compiling the Program
3. Enter the following name when prompted:
cust_order

If you are using the Program menu option for the first time, you will
be prompted to create the program database before you can proceed.
Answer y to this question if it appears. See the INFORMIX-4GL
Reference for information on the program database. After a few
seconds, the NEW PROGRAM screen appears, as shown in Figure 5-1.

Figure 5-1
The NEW PROGRAM Screen

The name of the program appears as cust_order. The program
consists of one Globals module and two 4GL source modules.

To enter the 4GL source modules

1. Choose the 4GL menu option.

2. Enter main as the first 4GL source module.

3. Enter order as the second 4GL source module and press ESC.

NEW PROGRAM: 4GL Globals Other Program_Runner Rename Exit
Edit the 4GL sources list.

--- Press CTRL-W for Help -----
Program [cust_order]
Runner [fglgo] Runner Path []
Debugger[fgldb] Debugger Path []

4gl Source 4gl Source Path
[] []
[] []
[] []
[] []
[] []

Global Source Global Source Path
[] []
[] []

Other .4go Other .4go Path
[] []
[] []
5-16 Guide to the IBM Informix 4GL Interactive Debugger

Compiling the Program
To enter the Globals module

1. Choose the Globals option.

2. Enter globals as the global source module and press ESC.

The NEW PROGRAM screen appears, as shown in Figure 5-2.

Figure 5-2
Defining the cust_order Program

Compiling the Program
Now that you have defined the programs, the next step is to compile it.

To compile the program

1. Choose the Exit option to return to the PROGRAM menu.

2. Choose the Compile option to compile the three modules into the
cust_order executable program.

The name of each module is displayed on the screen individually as
the module compiles. Figure 5-3 illustrates the appearance of the
screen when the final module has begun compilation.

NEW PROGRAM: 4GL Globals Other Program_Runner Rename Exit
Edit the 4GL sources list.

-- Press CTRL-W for Help -------
Program [cust_order]
Runner [fglgo] Runner Path []
Debugger[fgldb] Debugger Path []

4gl Source 4gl Source Path
[main] []
[order] []
[] []
[] []
[] []

Global Source Global Source Path
[globals] []
[] []

Other .4go Other .4go Path
[] []
[] []
A Multi-Module Program: cust_order 5-17

Working with Multi-Module Programs
Figure 5-3
Compiling the cust_order Program

When the process is complete, you should see the following message:

Program successfully compiled.

For information on compiling a multi-module program from the command
line and for more information on the process of compilation, see the
INFORMIX-4GL Reference.

Working with Multi-Module Programs
Once the program is compiled, you are ready to access the Debugger.

To initiate the debugging session

1. Choose the Debug option from the PROGRAM menu.

2. Select the cust_order program.

After a few seconds, the Source and Command windows appear on the
terminal screen as shown in Figure 5-4.

COMPILE PROGRAM >>
Choose a program with arrow keys or enter a name, and press RETURN.

--- Press CTRL-W for Help -----

Compiling INFORMIX-4Gl sources:
globals.4gl
main.4gl
order.4gl

Compilation in progress...please wait.
5-18 Guide to the IBM Informix 4GL Interactive Debugger

Viewing a Module in the Source Window
Figure 5-4
Accessing the Debugger

Viewing a Module in the Source Window

When you first access a multi-module program using the Debugger, the
Source window displays the module that contains the MAIN section. On a
standard terminal, the first nine lines of the MAIN section appear in the
Source window, followed by the name of the module and current function.

You can display a different module in the Source window by using the VIEW
command followed by the module name. Do not use the .4gl extension when
entering a module name.

5 MAIN
6
7 DEFER INTERRUPT
8
9 OPEN FORM order_form FROM "orderform"
10 DISPLAY FORM order_form
11 ATTRIBUTE(MAGENTA)
12 MENU "ORDERS"
13 COMMAND "Add-order"

(main.4gl:main)

$

function

module

VIEW
A Multi-Module Program: cust_order 5-19

Viewing a Module in the Source Window
To display a different module

1. Enter the following command to display the order module in the
Source window:

view order

The Debugger displays the first nine lines of the module you have
specified in the Source window, and the last line of this window
changes to reflect the current module and function as shown in
Figure 5-5.

Figure 5-5
Viewing a Different Module in the Source Window

2. Press the Interrupt key (CTRL-C) to return the cursor to the Command
window.

1 GLOBALS
2 "globals.4gl"
3
4 DEFINE query_stat INTEGER
5
6
7 FUNCTION add_order()
8 DEFINE pa_curr, s_curr INTEGER
9

(order.4gl:add_order)

$view order
5-20 Guide to the IBM Informix 4GL Interactive Debugger

Viewing a Function in a Different Module
Viewing a Function in a Different Module
You do not need to know the module in which a specific function is located
in order to display it. For example, to display the query_customer function
in the Source window, enter the following command:

view query_customer

This command restores main as the current module and makes
query_customer the current function.

Figure 5-6
Viewing a Function in a Different Module

61 FUNCTION query_customer()
62 DEFINE where_part CHAR(200),
63 query_text CHAR(250),
64 answer CHAR(1),
65 mrow, chosen, exist SMALLINT
66
67 CLEAR FORM
68 CALL clear_menu()
69

(main.4gl:query_customer)

$view order
$view query_customer
A Multi-Module Program: cust_order 5-21

Searching the Current Module
Searching the Current Module
You can only search for a pattern of characters within the current module.
See Chapter 2 if you would like to review the search characters or any of the
other keys available for manipulating the Debugger windows.

To search the current module

1. Use the appropriate keys to scroll the main module through the
Source window and to search for patterns of characters within this
module.

2. Press the Interrupt key (CTRL-C) when finished to return the cursor to
the Command window.

Setting Tracepoints or Breakpoints at a Line Number
To set a tracepoint or breakpoint at a line number in a multi-module program,
you must do one of the following things:

■ Use the VIEW command to make the module in which the line
number occurs the current module.

■ Qualify the line number with the module name.

In the cust_order program, if main is the module currently displayed in the
Source window, you must enter the following command to set a breakpoint
at line 192 of the order module:

break order.192

If order is the module currently displayed in the Source window, you can
enter the following command:

break 192

This breakpoint causes the Debugger to suspend execution immediately
prior to executing the DISPLAY ARRAY statement at line 192 of the order
module.
5-22 Guide to the IBM Informix 4GL Interactive Debugger

Module Variables
Module Variables
A module variable is a variable defined outside the GLOBALS statement, and
before any of the functions in a module. The scope of a module variable is the
module in which it occurs. In the order module, the query_stat module
variable is defined as follows:

1 GLOBALS
2 "globals.4gl"
3
4 DEFINE query_stat INTEGER

Setting Tracepoints or Breakpoints on Module Variables
To set a tracepoint or breakpoint on a module variable, you must do one of
the following things:

■ Use the VIEW command to make the module in which the variable is
defined the current module.

■ Qualify the variable name with the keyword MODULE followed by
the module name.

In the cust_order program, if order is the module currently displayed in the
Source window, you can enter the following command to set a tracepoint on
query_stat:

trace query_stat

If main is the module currently displayed in the Source window, you must
enter the following command to set the tracepoint:

trace module.order.query_stat

You must qualify a module variable if there is a local variable with the same
name defined in the current function.

See “Scope of Reference” on page 9-16 in for more information on how to
qualify variables in the Debugger.
A Multi-Module Program: cust_order 5-23

Module Variables and the DUMP Command
Module Variables and the DUMP Command
The DUMP command displays the values of module variables if you use
either the GLOBALS or the ALL option. Module variables are displayed
following global variables and before local variables.

For example, in the cust_order program, the module variable query_stat
would appear in the output of the DUMP ALL command as follows:

DUMPING GLOBAL VARIABLES
...

...
DUMPING GLOBAL VARIABLES OF MODULE [order]

query_stat = 1

DUMPING LOCAL VARIABLES OF FUNCTION [add_order]
...

...

This chapter summarizes the facts that you should be aware of when
you work with multi-module programs. When you work within the
Programmer’s Environment, you must define a multi-module program by
using the New Program menu option before you can compile and run it. You
can use the VIEW command with the module option to display a different
module in the Source window. The Debugger defaults to the module
currently displayed in the Source window when you set tracepoints or break-
points at a line number. When setting tracepoints or breakpoints on a module
variable, you must either make the module in which the variable is defined
the current module or qualify the variable with the keyword MODULE
followed by the module name.
5-24 Guide to the IBM Informix 4GL Interactive Debugger

6
Chapter
Tracing Logic of the cust_order
Program
In This Chapter . 6-3

Overview of the Debugging Session 6-4

Setting Tracepoints for the Current Session 6-5
Setting the First Tracepoint 6-5
Setting the Second Tracepoint 6-6

Setting Breakpoints for the Current Session 6-8
Setting Tracepoints and Breakpoints Without

Enabling Them 6-8
Setting the First Breakpoint 6-8
Setting the Second Breakpoint. 6-10

Tracing Program Logic: Example #1 6-12
The ENABLE Command 6-12
Starting the Session 6-13
Reaching the First Breakpoint 6-15
Resuming Operation Following the First Breakpoint 6-20

The AUTOTOGGLE Parameter 6-20
Stepping Through a Function 6-21
Stepping over a Function 6-23
Stepping into a Function 6-25

Tracing Program Logic: Example #2 6-28
Modifying the Debugging Environment 6-29
Resuming Execution 6-30
Reaching the Second Breakpoint 6-31
Resuming Operation Following the Second Breakpoint 6-33

6-2 Guid
Executing a Function Interactively 6-35
The CALL Command 6-36
Changing a Value with the LET Command 6-37
Entering the CALL Command 6-37
Appearance of the Source Window 6-38
Appearance of the Command Window 6-39
Resuming Operation After CALL 6-39

Execution of the Tracepoints 6-41
Contents of the order1 File 6-42

Output of the First Tracepoint 6-44
Output of the Second Tracepoint 6-45

Chapter Summary 6-46
e to the IBM Informix 4GL Interactive Debugger

In This Chapter
This chapter uses the cust_order program created in Chapter 5, “A Multi-
Module Program: cust_order,” to introduce additional commands and
capabilities of the Debugger, and to illustrate further ways in which you can
interact with an executing INFORMIX-4GL program. The following topics are
covered in this chapter:

■ How to set tracepoints and breakpoints without enabling them

■ How to use the ENABLE command to activate a tracepoint or
breakpoint

■ Options for the STEP command when the next statement is a function
call

■ How to use the AUTOTOGGLE terminal display parameter to alter the
conditions under which the Debugger displays the Application
screen

■ How to use the CALL command to execute a function interactively

■ How to redirect the output of the TRACE and PRINT commands to a
file

Two intentional bugs produce fatal errors in the cust_order program. The
examples in this chapter are designed to help you familiarize yourself with
the program by using aspects of it that are working correctly. Chapter 7,
“Analyzing Runtime Errors in the cust_order Program,” shows you how to
produce the fatal errors, and illustrates the operation of the Debugger when
runtime errors occur. If you produce a fatal error in the course of working
with the program in this chapter, you should turn to Chapter 7 for infor-
mation on how to correct it and restart the Debugger.

The examples in this chapter emphasize the functions of the order module
that manipulate the values entered onto the screen form and insert them into
the database. Chapter 7 emphasizes the functions of the main module.
Tracing Logic of the cust_order Program 6-3

Overview of the Debugging Session
Overview of the Debugging Session
You are already familiar with two principal debugging tools, the setting of
tracepoints and breakpoints. Specifically, you have learned how to perform
the following operations:

■ Set tracepoints and breakpoints with the TRACE and BREAK
commands, respectively.

■ Monitor the operation of a program with tracepoints and break-
points set.

■ Make a tracepoint or breakpoint inactive with the DISABLE
command.

■ Remove tracepoints and breakpoints with the NOTRACE and
NOBREAK commands, respectively.

It is also possible to define a tracepoint or breakpoint without enabling it.
This allows you, for example, to define multiple tracepoints and breakpoints
at the beginning of a session or in a .4db file and to enable, or activate, them
as needed.

In setting up the debugging session for this chapter, you will carry out the
following activities:

■ Define two enabled tracepoints.

■ Define two breakpoints without enabling them.

Each tracepoint or breakpoint is designed to familiarize you with specific
program segments or activities and to illustrate a particular Debugger
command or strategy.

The cust_order program is more complex than the customer program
introduced in Chapter 2, “Getting Started with the Debugger,” and this
chapter cannot examine its operation with the same degree of detail. Consult
Appendix C, “Sample Programs,” if you would like more information on the
program segments described in the course of this chapter.
6-4 Guide to the IBM Informix 4GL Interactive Debugger

Setting Tracepoints for the Current Session
Setting Tracepoints for the Current Session
The tracepoints that you set in this session monitor the functions that insert
the order and item information into the database. These tracepoints use the
PRINT command to display the values inserted by the traced functions into
the orders and items tables.

The tracepoints illustrate how you can write the output of the TRACE and
PRINT commands to a file. Because the combined number of lines generated
by these tracepoints exceeds the number of lines that the Command window
retains in its buffer (50), writing to a file is the only way to preserve a
complete record of their output after the tracepoints have executed.

Setting the First Tracepoint
The first tracepoint allows you to monitor the execution of the insert_order
function and to print out the values inserted by this function into the orders
table. The insert_order function executes after the user has pressed ESC to
terminate order entry.

To set this tracepoint, enter the following command:

trace insert_order {print p_orders} >> order1

This command tells the Debugger to perform the following operations:

■ Output the line numbers at which the insert_order function begins
and ends execution.

■ Print the values of the members of the p_orders program record
when the insert_order function is called.

■ Write these values to a file named order1.
Tracing Logic of the cust_order Program 6-5

Setting the Second Tracepoint
Figure 6-1 illustrates your entry of the first tracepoint and the Debugger
response.

Figure 6-1
Setting the First Tracepoint

Setting the Second Tracepoint
The second tracepoint allows you to monitor the execution of the
insert_items function and to print out the values inserted by this function
into the items table. The insert_items function is called by insert_order as
follows:

95 FUNCTION insert_order()
...

110 IF NOT insert_items() THEN
111 ROLLBACK WORK
112 ERROR "Unable to insert items" ATTRIBUTE(RED, REVERSE,BLINK)
113 RETURN
114 END IF

...
119 END FUNCTION

The insert_items function returns a value of 1, or TRUE, to insert_order if the
values are successfully inserted, and a value of 0, or FALSE, otherwise.

5 MAIN
6
7 DEFER INTERRUPT
8
9 OPEN FORM order_form FROM "orderform"
10 DISPLAY FORM order_form
11 ATTRIBUTE(MAGENTA)
12 MENU "ORDERS"
13 COMMAND "Add-order" "Enter new order to database and

print i(main.4gl:main)

$trace insert_order {print p_orders} >> order1
(1) trace in function insert_order [order.4gl]

execute: {print p_orders}
append: order1
scope function: insert_order

$

6-6 Guide to the IBM Informix 4GL Interactive Debugger

Setting the Second Tracepoint
To set this tracepoint, enter the following command:

trace insert_items {print p_items} >> order1

This command tells the Debugger to perform the following operations:

■ Output the line numbers at which the insert_items function begins
and ends execution.

■ Output the value returned by insert_items to the calling function.

■ Print the values of the members of each element of the p_items
program array when the insert_items function is called.

■ Write these values to a file named order1.

Figure 6-2 illustrates your setting of the second tracepoint, and the Debugger
response.

Figure 6-2
Setting the Second Tracepoint

5 MAIN
6
7 DEFER INTERRUPT
8
9 OPEN FORM order_form FROM "orderform"
10 DISPLAY FORM order_form
11 ATTRIBUTE(MAGENTA)
12 MENU "ORDERS"
13 COMMAND "Add-order" "Enter new order to database and

print i(main.4gl:main)

(1) trace in function insert_order [order.4gl]
execute: {print p_orders}
append: order1
scope function: insert_order

$trace insert_items {print p_items} >> order1
(2) trace in function insert_items [order.4gl]

execute: {print p_items}
append: order1
scope function: insert_items

$

Tracing Logic of the cust_order Program 6-7

Setting Breakpoints for the Current Session
Setting Breakpoints for the Current Session
The first breakpoint that you set for this session is designed to help you
understand the program segments that perform the important operations of
calculating the item and order totals for a particular customer order.

The second breakpoint is designed to let you observe the feedback the
program provides if invalid data values are entered and to let you compare
different strategies for changing the values.

These breakpoints are disabled, or inactive, when you set them. They are
designed to give you additional practice in working with breakpoints and to
show how breakpoints can be enabled and disabled as needed in the course
of a debugging session.

Setting Tracepoints and Breakpoints Without
Enabling Them
You use an asterisk (*) following the command name to define a tracepoint or
breakpoint without enabling it. The general format for setting a breakpoint
without enabling it is as follows.

Setting the First Breakpoint
The first breakpoint is designed to familiarize you with the program
segments that calculate and display the item and order totals. It causes
program execution to be suspended when the item_total function is called.

To set a breakpoint when a function is called, follow the BREAK keyword with
the function name. Do not include parentheses after the function name.

lineno

function

IF condition

BREAK Variable
6-8 Guide to the IBM Informix 4GL Interactive Debugger

Setting the First Breakpoint
Enter the following command to set the first breakpoint:

break * item_total

This command tells the Debugger to perform the following tasks:

■ Suspend program execution when the item_total function is called.

■ Make the breakpoint inactive until enabled by you.

Figure 6-3 illustrates your entry of this command and the Debugger
response.

Figure 6-3
Setting the First Breakpoint

The asterisk (*) does not appear when the Debugger echoes the breakpoint.
However, the Debugger displays the information that the breakpoint is
disabled. The item_total function is called by add_order in an AFTER FIELD
clause as follows:

66 AFTER FIELD quantity
67 MESSAGE ""
68 LET pa_curr = arr_curr()
69 IF p_items[pa_curr].unit_price IS NOT NULL
70 AND p_items[pa_curr].quantity IS NOT NULL
71 THEN
72 CALL item_total()

5 MAIN
6
7 DEFER INTERRUPT
8
9 OPEN FORM order_form FROM "orderform"
10 DISPLAY FORM order_form
11 ATTRIBUTE(MAGENTA)
12 MENU "ORDERS"
13 COMMAND "Add-order"

(main.4gl:main)

$trace insert_items {print p_items} >> order1
(2) trace in function insert_items [order.4gl]

execute: {print p_items}
append: order1
scope function: insert_items

$break * item_total
(3) break in function item_total [order.4gl]

scope function: item_total
Disabled point 3.
$

Tracing Logic of the cust_order Program 6-9

Setting the Second Breakpoint
This function multiplies the number entered in the Quantity field by the
price of the item.

Setting the Second Breakpoint
A second breakpoint suspends program execution if the value of the 4GL
global variable status is set to 100, or NOTFOUND. For example, the value of
status is set to NOTFOUND when the program attempts to verify invalid
values entered into the Stock No. and Code fields on the screen form. Setting
this breakpoint allows you to observe the feedback provided by the program
when invalid values are entered. You will then compare two strategies for
correcting invalid data and resetting the value of status to 0. These strategies
are as follows:

■ Correct the values using the regular program mechanisms

■ Correct the values using Debugger commands

This test for the value of status occurs at line 211 in the get_item function of
the order module as follows:

205 SELECT description, unit_price
206 INTO p_items[pa_curr].description,
207 p_items[pa_curr].unit_price
208 FROM stock
209 WHERE stock.stock_num = p_items[pa_curr].stock_num
210 AND stock.manu_code = p_items[pa_curr].manu_code
211 IF status THEN
212 LET p_items[pa_curr].description = NULL
213 LET p_items[pa_curr].unit_price = NULL
214 END IF

The query_customer function in the main module also performs a number of
tests to determine if status is equal to 100. However, this breakpoint is not
enabled, or activated, in the debugging session until after query_customer
executes.

To set the second breakpoint, enter the following command:

break * if status = 100

This command tells the Debugger to perform the following operations:

■ Suspend program execution if the value of status is set to 100.

■ Make this breakpoint inactive until enabled by you.
6-10 Guide to the IBM Informix 4GL Interactive Debugger

Setting the Second Breakpoint
Figure 6-4 illustrates your entry of this command and the Debugger’s
response.

Figure 6-4
Setting the Second Breakpoint

When you begin operation of the Debugger for this session, all of the terminal
display parameters have their default values. You can use the LIST DISPLAY
command if you would like to review these parameters and their values.

5 MAIN
6
7 DEFER INTERRUPT
8
9 OPEN FORM order_form FROM "orderform"
10 DISPLAY FORM order_form
11 ATTRIBUTE(MAGENTA)
12 MENU "ORDERS"
13 COMMAND "Add-order"

(main.4gl:main)

scope function: insert_items
$break * item_total
(3) break in function item_total [order.4gl]

scope function: item_total
Disabled point 3.
$break * if status = 100
(4) break

if: status = 100
Disabled point 4.
$

Tracing Logic of the cust_order Program 6-11

Tracing Program Logic: Example #1
Tracing Program Logic: Example #1
The debugging steps in this section are designed to help you understand the
program segments that calculate and display the item and order totals. In
working with the program in this section, you will carry out the following
activities:

■ Choose the Add-Order option from the cust_order program menu.

■ Enter search criteria and select a customer for whom to place an
order.

■ Enter sample order information for this customer.

■ Add the first item to the order.

You will perform the following Debugger activities:

■ Enable the first breakpoint you have set:
break item_total

■ Enter the RUN command to start operation of the Debugger.

■ Use the TURN command to switch the AUTOTOGGLE terminal
display parameter OFF.

■ Use the STEP command to step through individual 4GL statements.

■ Use the STEP command to step over a function, treating all the
statements in the function as a single step.

■ Use the STEP command with the INTO option to step into a function,
treating each executable statement in the function as a single step.

The ENABLE Command
You can use the ENABLE command to make a disabled tracepoint or
breakpoint active. When a tracepoint or breakpoint is enabled, the action
it specifies continues until the point is disabled or removed.

You can refer to tracepoints or breakpoints by their reference numbers when
enabling them. For example, enter the following command to enable the
breakpoint with the reference number (3), break item_total:

enable 3
6-12 Guide to the IBM Informix 4GL Interactive Debugger

Starting the Session
Figure 6-5 illustrates your enabling of this breakpoint and the Debugger
response.

Figure 6-5
Enabling the First Breakpoint

With this breakpoint enabled, the Debugger causes program execution to be
suspended as soon as the item_total function is entered.

Starting the Session
Starting the session involves starting the Debugger and selecting the
customer for whom you want to place an order.

To start the session

1. Enter the RUN command or press F5 to begin operation of the
Debugger.

The Debugger displays the Application screen with the cust_order
program menu and the orderform screen form, as shown in
Figure 6-6.

5 MAIN
6
7 DEFER INTERRUPT
8
9 OPEN FORM order_form FROM "orderform"
10 DISPLAY FORM order_form
11 ATTRIBUTE(MAGENTA)
12 MENU "ORDERS"
13 COMMAND "Add-order"

(main.4gl:main)

(3) break in function item_total [order.4gl]
scope function: item_total

Disabled point 3.
$break * if status = 100
(4) break

if: status = 100
Disabled point 4.
$enable 3
Enabled point(s) 3.
$

Tracing Logic of the cust_order Program 6-13

Starting the Session
Figure 6-6
The Application Screen with the cust_order Program

2. Choose the Add-Order menu option.

3. Enter 108 in the Customer Number field to retrieve Donald Quinn
and press ESC.

4. Choose the Select option from the BROWSE Menu to select this
customer.

Warning: Entering invalid customer search criteria or choosing the Quit option from
the BROWSE menu produces a fatal error that aborts operation of the cust_order
program. If you produce this error, you should reenter the RUN command and take
care to retrieve and select a valid customer entry. You can turn to Chapter 7 for a
discussion of this error and instructions for correcting it. Appendix A, “The Demon-
stration Database and Application,” in “INFORMIX-4GL by Example” lists the valid
customer entries for the stores7 demonstration database.

ORDERS: Add_Order Find_Order Exit
Enter new order to database

ORDER FORM

Customer Number:[] Contact Name:[][]

Company Name:[]
Address:[][]

City:[] State:[] Zip Code:[]
Telephone:[]

Order No:[] Order Date:[] PO Number:[]

Shipping Instructions:[]

Item No. Stock No. Code Description Quantity Price Total
[] [] [] [] [] [] []
[] [] [] [] [] [] []
[] [] [] [] [] [] []
[] [] [] [] [] [] []

Running Total including Tax and Shipping Charges:[]
===
6-14 Guide to the IBM Informix 4GL Interactive Debugger

Reaching the First Breakpoint
When Donald Quinn is selected, the Application screen appears as shown in
Figure 6-7.

Figure 6-7
Selecting a Customer

Reaching the First Breakpoint
When a customer has been successfully retrieved and selected, the add_order
function executes the statement at line 17:

17 INPUT BY NAME p_orders.order_date, p_orders.po_num,
18 p_orders.ship_instruct

The function waits for you to enter values into the Order Date, PO Number,
and Shipping Instructions fields.

Enter the order date, PO number and shipping instructions

ORDER FORM

Customer Number:[108] Contact Name:[Donald][Quinn]

Company Name:[Quinn’s Sports]
Address:[587 Alvarado][]

City:[Redwood City] State:[CA] Zip Code:[94063]
Telephone:[415-544-8729]

Order No:[] Order Date:[9/24/87] PO Number:[]

Shipping Instructions:[]

Item No. Stock No. Code Description Quantity Price Total
[] [] [] [] [] [] []
[] [] [] [] [] [] []
[] [] [] [] [] [] []
[] [] [] [] [] [] []

Running Total including Tax and Shipping Charges:[]
===
Tracing Logic of the cust_order Program 6-15

Reaching the First Breakpoint
To enter order and item information

1. Enter some sample values into these fields and press RETURN after
each entry.

The order information you entered appears on the screen, as shown
in Figure 6-8.

Figure 6-8
Entering the Order Information

The add_order function now executes the statement at line 25:
25 INPUT ARRAY p_items FROM s_items.*

The cursor is positioned at the Stock No. field of the first row of the
screen array.

2. Enter the values that appear in Figure 6-9 into the Stock No. and
Code field, and press RETURN after each entry.

Enter a stock number or press CTRL-B to scan stock list.
Press ESC to write order.

ORDER FORM

Customer Number: 108 Contact Name: Donald Quinn

Company Name: Quinn’s Sports
Address: 587 Alvarado

City: Redwood City State: CA Zip Code: 94063
Telephone: 415-544-8729

Order No:[] Order Date: 09/24/1987 PO Number: JR1147

Shipping Instructions: overnight delivery

Item No. Stock No. Code Description Quantity Price Total
[] [] [] [] [] [] []
[] [] [] [] [] [] []
[] [] [] [] [] [] []
[] [] [] [] [] [] []

Running Total including Tax and Shipping Charges:[]
===
6-16 Guide to the IBM Informix 4GL Interactive Debugger

Reaching the First Breakpoint
Figure 6-9
Entering Item Information

Warning: The screen displays the message Enter a stock number or press
CTRL-B to scan stock list. Pressing CTRL-B to produce this stock list causes
a fatal error. If you produce this error, you should reenter the RUN command, and
enter values for the Stock No. and Code fields directly onto the screen form. You can
turn to Chapter 7 for a discussion of this error and instructions for correcting it. See
Appendix A “The Demonstration Database and Application,” in “INFORMIX-4GL
by Example,” for a list of valid stock items in the stores7 demonstration database.

When you enter a value into either the Stock No. or the Code field,
add_order performs a test to determine if you have entered a value for both.
Item entry does not proceed until both fields have a value because it is the
combination of a stock number and manufacturer code that uniquely
identifies an item in the stock table. See Appendix A “The Demonstration
Database and Application,” in INFORMIX-4GL by Example for more information
on the columns in the stores7 database.

Because you have entered valid values in both fields, the program displays
the description and price of the item on the form. These values are as shown
in Figure 6-10.

Enter a stock number or press CTRL-B to scan stock list.
Press ESC to write order.

ORDER FORM

Customer Number: 108 Contact Name: Donald Quinn

Company Name: Quinn’s Sports
Address: 587 Alvarado

City: Redwood City State: CA Zip Code: 94063
Telephone: 415-544-8729

Order No:[] Order Date: 09/24/1987 PO Number: JR1147

Shipping Instructions: overnight delivery

Item No. Stock No. Code Description Quantity Price Total
[] [5] [NRG] [] [] [] []
[] [] [] [] [] [] []
[] [] [] [] [] [] []
[] [] [] [] [] [] []

Running Total including Tax and Shipping Charges:[]
===
Tracing Logic of the cust_order Program 6-17

Reaching the First Breakpoint
Figure 6-10
Displaying Item Information

The cursor is now positioned at the Quantity field, and the program is
awaiting input. Therefore, enter 12 as the quantity, and press RETURN.

As soon as the cursor leaves the Quantity field, add_order executes the block
of code following the AFTER FIELD quantity clause and calls the item_total
function.

Because you have set a breakpoint when this function is called, program
execution is suspended. Control returns to the Debugger, which redisplays
the Source and Command windows as shown in Figure 6-11.

Enter the item quantity
Press ESC to write order

ORDER FORM

Customer Number: 108 Contact Name: Donald Quinn

Company Name: Quinn’s Sports
Address: 587 Alvarado

City: Redwood City State: CA Zip Code: 94063
Telephone: 415-544-8729

Order No:[] Order Date: 09/24/1987 PO Number: JR1447

Shipping Instructions: overnight delivery

Item No. Stock No. Code Description Quantity Price Total
[] [5] [NRG] [tennis racquet] [] [$28.00] []
[] [] [] [] [] [] []
[] [] [] [] [] [] []
[] [] [] [] [] [] []

Running Total including Tax and Shipping Charges:[]
===
6-18 Guide to the IBM Informix 4GL Interactive Debugger

Reaching the First Breakpoint
Figure 6-11
Reaching the First Breakpoint

When you set a breakpoint on a function, program execution stops as soon as
the function is called. The Source window highlights the first executable
statement in the function. The first executable statement in the item_total
function is the statement at line 140:

140 LET pa_curr = arr_curr()

This is therefore the first statement to execute when operation resumes.

The Command window displays the function name, line number, and
module name at which the breakpoint occurred. This is line 140 in the
item_total function in the order module.

136
137 FUNCTION item_total()
138 DEFINE pa_curr, sc_curr INTEGER
139
140 LET pa_curr = arr_curr()
141 LET sc_curr = scr_line()
142 LET p_items[pa_curr].total_price =
143 p_items[pa_curr].quantity * p_items[pa_curr].unit_price
144 DISPLAY p_items[pa_curr].total_price TO s_items[sc_curr]

.total_pr(order.4gl:item_total)

Disabled point 3.
$break * if status = 100
(4) break

if: status = 100
Disabled point 4.
$enable 3
Enabled point(s) 3.
$run
Stopped in item_total at line 140 in module "order.4gl"
$

Tracing Logic of the cust_order Program 6-19

Resuming Operation Following the First Breakpoint
Resuming Operation Following the First Breakpoint
You have set a breakpoint at this function in order to suspend execution and
examine in detail the program segments that calculate and display the item
and order totals. Item totals are calculated by the current function,
item_total. The listing of this function follows:

137 FUNCTION item_total()
138 DEFINE pa_curr, sc_curr INTEGER
139
140 LET pa_curr = arr_curr()
141 LET sc_curr = scr_line()
142 LET p_items[pa_curr].total_price =
143 p_items[pa_curr].quantity * p_items[pa_curr].unit_price
144 DISPLAY p_items[pa_curr].total_price TO s_items[sc_curr].total_price
145 END FUNCTION

In “Stepping Through a Function” on page 6-21, you will execute these
statements line by line. Before you do this, however, it is desirable to alter the
conditions under which the Debugger toggles the Application screen.

The AUTOTOGGLE Parameter

Under default conditions, the Debugger switches from the Debugger screen
to the Application screen when either of the following conditions occurs:

■ The program requires input.

■ The program generates output.

If you are examining a series of 4GL statements, or performing diagnostic
tests, it is often distracting to have the Application screen toggle every time
the program produces output. You can use the AUTOTOGGLE terminal
display parameter to control the conditions under which the Application
screen appears.

When the AUTOTOGGLE parameter is set to OFF, the Application screen
appears only when the program requires the input necessary to continue
execution.

Enter the following command to prevent the Debugger from toggling to the
Application screen every time the statements you are examining generate
output:

turn off autotoggle
6-20 Guide to the IBM Informix 4GL Interactive Debugger

Resuming Operation Following the First Breakpoint
Stepping Through a Function

In Chapter 4, “Analyzing a Logical Error in the customer Program,” you used
the STEP command to execute a single 4GL statement. Stepping through state-
ments one at a time or a few at a time is an excellent way to familiarize
yourself with the flow of control in an unfamiliar program.

To step through a function

1. Enter the STEP command or press F2 five times in succession to move
through the next five statements of the item_total function one at a
time.

These statements carry out the following activities:

■ Assign to the local variable pa_curr the value returned by the
4GL function arr_curr.

■ Assign to the local variable sc_curr the value returned by the 4GL
function scr_line.

■ Multiply the values of quantity and unit_price in the current
program array row and assign the result to total_price.

■ Display the value of total_price to the Total field on the screen
form.

■ End the function.

Each time you enter the STEP command, the Debugger highlights the
next statement to be executed in the Source window. It displays in
the Command window the line number of the statement you have
just executed and the name of the function and module in which it
occurs. Figure 6-12 illustrates the appearance of the Source and
Command windows when you have performed this series of five
steps.
Tracing Logic of the cust_order Program 6-21

Resuming Operation Following the First Breakpoint
Figure 6-12
Stepping Through the item_total Function

When you execute the final statement in the item_total function, you
see that control returns to the calling function add_order. The Source
window highlights the following statement:

25 INPUT ARRAY p_items FROM s_items.*

2. Enter the STEP command or press F2 to execute this statement.

The Debugger toggles briefly to the Application screen when it executes the
INPUT ARRAY statement. It then redisplays the Source and Command
windows with the contents, shown in Figure 6-13.

21 CLEAR FORM
22 ERROR "Order input aborted" ATTRIBUTE (RED, REVERSE)
23 RETURN
24 END IF
25 INPUT ARRAY p_items FROM s_items.*
26 BEFORE FIELD stock_num
27 MESSAGE "Press ESC to write order"
28 DISPLAY "Enter a stock number or press CTRL-B to scan

stock list"
(order.4gl:add_order)

Stopped in item_total at line 141 in module "order.4gl"
$step
Stopped in item_total at line 142 in module "order.4gl"
$step
Stopped in item_total at line 144 in module "order.4gl"
$step
Stopped in item_total at line 145 in module "order.4gl"
$step
Stopped in add_order at line 25 in module "order.4gl"
$

6-22 Guide to the IBM Informix 4GL Interactive Debugger

Resuming Operation Following the First Breakpoint
Figure 6-13
Stepping Through the INPUT ARRAY Statement

Stepping over a Function

At this stage, you have entered all the values for the first item on the order.
Two functions are called following the AFTER INSERT clause at line 78. The
Debugger highlights the first of the function calls in the Source window:

79 CALL renum_items()

The renum_items function computes the item number associated with each
item on the order, and displays this number in the Item No. field on the
screen. Because the goal of this series of debugging steps is to observe the
statements that calculate and display the item and order totals, you do not
want to examine this function at this time.

When the statement you execute with the STEP command is a function call,
all of the statements in the function are treated as a single step.

Enter the STEP command, or press F2, to tell the Debugger to execute all of the
statements in the renum_items function as a unit.

75 "quantity must all be entered" ATTRIBUTE (RED, REVERS
E)

76 NEXT FIELD stock_num
77 END IF
78 AFTER INSERT, DELETE
79 CALL renum_items()
80 CALL order_total()
81 AFTER ROW
82 CALL order_total()

(order.4gl:add_order)

Stopped in item_total at line 142 in module "order.4gl"
$step
Stopped in item_total at line 144 in module "order.4gl"
$step
Stopped in item_total at line 145 in module "order.4gl"
$step
Stopped in add_order at line 25 in module "order.4gl"
$step
Stopped in add_order at line 79 in module "order.4gl"
$

Tracing Logic of the cust_order Program 6-23

Resuming Operation Following the First Breakpoint
The renum_items function executes, and control returns to add_order.
Figure 6-14 illustrates your entry of the STEP command and the Debugger
output.

Figure 6-14
Stepping over the renum_items Function

75 "quantity must all be entered" ATTRIBUTE (RED, REVERSE)
76 NEXT FIELD stock_num
77 END IF
78 AFTER INSERT, DELETE
79 CALL renum_items()
80 CALL order_total()
81 AFTER ROW
82 CALL order_total()

(order.4gl:add_order)

Stopped in item_total at line 144 in module "order.4gl"
$step
Stopped in item_total at line 145 in module "order.4gl"
$step
Stopped in add_order at line 25 in module "order.4gl"
$step
Stopped in add_order at line 79 in module "order.4gl"
$step
Stopped in add_order at line 80 in module "order.4gl"
$

6-24 Guide to the IBM Informix 4GL Interactive Debugger

Resuming Operation Following the First Breakpoint
Stepping into a Function

The Source window now highlights the second of the two function calls that
occur following the AFTER INSERT clause. This is the statement at line 80:

80 CALL order_total()

The order_total function calculates and displays the running total for the
order. The listing of this function follows:

122 FUNCTION order_total()
123 DEFINE order_total MONEY(8),
124 i INTEGER
125
126 LET order_total = 0.00
127 FOR i = 1 TO ARR_COUNT()
128 IF p_items[i].total_price IS NOT NULL THEN
129 LET order_total = order_total + p_items[i].total_price
130 END IF
131 END FOR
132 LET order_total = 1.1 * order_total
133 DISPLAY order_total TO t_price ATTRIBUTE (GREEN)
134 END FUNCTION

Because you are monitoring the statements that compute and display the
item and order totals, you want to examine the individual statements in this
function.

When the next statement to execute is a function call, you can use the STEP
command with the INTO option to tell the Debugger to treat the statements
of the function as individual steps rather than as a unit. When you enter the
STEP INTO command, the Debugger moves to the first executable statement
in the function.
Tracing Logic of the cust_order Program 6-25

Resuming Operation Following the First Breakpoint
To use STEP INTO

1. Enter the following command or press F3 to tell the Debugger to treat
the statements in the order_total function as individual steps:

step into

Figure 6-15 illustrates your entry of the STEP INTO command and the
Debugger output.

Figure 6-15
Stepping INTO the order_total Function

The Source window highlights the first executable statement in the
order_total function. This is the statement at line 126:

126 LET order_total = 0.00

2. Use the STEP command as you did with the item_total function to
move line by line through order_total.

Observe that the statements in this function carry out the following activities:

■ Initialize the MONEY variable order_total to 0.

■ Use a FOR loop to assign a value to the order_total variable.

■ Use the value returned by arr_count to set the upper boundary of the
FOR loop to the total number of items in the p_items program array.

122 FUNCTION order_total()
123 DEFINE order_total MONEY(8),
124 i INTEGER
125
126 LET order_total = 0.00
127 FOR i = 1 TO arr_count()
128 IF p_items[i].total_price IS NOT NULL THEN
129 LET order_total = order_total + p_items[i].total_price
130 END IF

(order.4gl:order_total)

Stopped in item_total at line 145 in module "order.4gl"
$step
Stopped in add_order at line 25 in module "order.4gl"
$step
Stopped in add_order at line 79 in module "order.4gl"
$step
Stopped in add_order at line 80 in module "order.4gl"
$step into
Stopped in order_total at line 126 in module "order.4gl"
$

6-26 Guide to the IBM Informix 4GL Interactive Debugger

Resuming Operation Following the First Breakpoint
■ Multiply the value assigned to order_total when the FOR loop
terminates by 1.1 to add tax and shipping charges.

■ Display the value of order_total to the field labeled Running Total
including Tax and Shipping Charges on the screen form.

■ End the function.

Because there is only one row entered at this time, the FOR loop executes only
once, and the value returned by arr_count is 1.

After you have used the STEP command to execute the final statement in the
order_total function:

134 END FUNCTION

control returns to add_order. The first statement to execute when you resume
operation in the next section is:

25 INPUT ARRAY p_items FROM s_items.*

The Debugger highlights this statement in the Source window as shown in
Figure 6-16.

Figure 6-16
Stepping Through the order_total Function

21 CLEAR FORM
22 ERROR "Order input aborted" ATTRIBUTE (RED, REVERSE)
23 RETURN
24 END IF
25 INPUT ARRAY p_items FROM s_items.*
26 BEFORE FIELD stock_num
27 MESSAGE "Press ESC to write order"
28 DISPLAY "Enter a stock number or press CTRL-B to scan

stock list"

(order.4gl:add_order)

Stopped in order_total at line 127 in module "order.4gl"
$step
Stopped in order_total at line 132 in module "order.4gl"
$step
Stopped in order_total at line 133 in module "order.4gl"
$step
Stopped in order_total at line 134 in module "order.4gl"
$step
Stopped in add_order at line 25 in module "order.4gl"
$

Tracing Logic of the cust_order Program 6-27

Tracing Program Logic: Example #2
This ends the first series of debugging steps. In the course of this section, you
have entered the order information for a selected customer and entered the
first row onto the order. You have enabled and reached the first breakpoint
set in this chapter.

In the next section, you will modify the debugging environment and resume
execution of the cust_order program with the INPUT ARRAY statement.

Tracing Program Logic: Example #2
The next series of debugging steps is designed to let you observe the
feedback provided by the program when an invalid item is entered in a row,
and to let you compare different strategies for producing a correct Stock No.
and Code field combination.

In working with the program in this section, you will carry out the following
activities:

■ Enter invalid data, and observe the program response.

■ Add two new rows to the customer order.

■ Press ESC to terminate order entry.

You will perform the following Debugger activities:

■ Modify the existing debugging environment.

■ Resume operation with the CONTINUE command.

■ Use the LET command to change the value of a variable.

■ Use the CALL command to execute a function interactively.
6-28 Guide to the IBM Informix 4GL Interactive Debugger

Modifying the Debugging Environment
Modifying the Debugging Environment
Before proceeding with the steps in this section, you should make certain
changes in the debugging environment. Specifically, the changes you want to
make are as follows:

■ Disable the first breakpoint, break item_total. This breakpoint has a
reference number of (3).

■ Enable the second breakpoint, break if status = 100. This breakpoint
has a reference number of (4).

■ Return the value of AUTOTOGGLE to its default value of ON.

To modify the debugging environment

1. Enter the following command to disable the first breakpoint:
disable 3

Now the Debugger will not suspend program execution when the
item_total function is called. This allows you to observe more clearly
the action of the second breakpoint.

2. Enter the following command to enable the second breakpoint:
enable 4

Now the Debugger will suspend program execution if the value of
status is set to 100.

3. Enter the following command to change the value of AUTOTOGGLE
to ON:

turn on autotoggle

Now the Debugger will display the Application screen both when
the program requires input and when it generates output.

Figure 6-17 illustrates your entry of these three commands and the
Debugger response to each.
Tracing Logic of the cust_order Program 6-29

Resuming Execution
Figure 6-17
Modifying the Debugging Environment

Resuming Execution
The Source window currently highlights the statement at line 25. This is the
first statement to execute when operation resumes:

25 INPUT ARRAY p_items FROM s_items.*

Enter the CONTINUE command or press F4 to resume execution of the
program.

The Debugger executes the INPUT ARRAY statement and redisplays the
Application screen. The cursor is positioned in the Stock No. field of the
second row of the screen array, and the program is awaiting input, as shown
in Figure 6-18.

21 CLEAR FORM
22 ERROR "Order input aborted" ATTRIBUTE (RED, REVERSE)
23 RETURN
24 END IF
25 INPUT ARRAY p_items FROM s_items.*
26 BEFORE FIELD stock_num
27 MESSAGE "Press ESC to write order"
28 DISPLAY "Enter a stock number or press CTRL-B to scan

stock list"
(order.4gl:add_order)

$step
Stopped in order_total at line 134 in module "order.4gl"
$step
Stopped in add_order at line 25 in module "order.4gl"
$disable 3
Disabled point(s) 3.
$enable 4
Enabled point(s) 4.
$turn on autotoggle
$

6-30 Guide to the IBM Informix 4GL Interactive Debugger

Reaching the Second Breakpoint
Figure 6-18
Resuming Execution of the Program

Reaching the Second Breakpoint
You have set a breakpoint whenever the value of status is set to 100.
Suspending execution when invalid values are entered allows you to observe
the feedback provided to the user and to experiment with different strategies
for correcting the data and resetting the value of status.

To suspend program execution following a lookup of the stock table, you
need to enter an invalid set of values into the Stock No. and Code fields. For
example, enter 1 in the Stock No. field and enter ANZ in the Code field.

Because the combination 1 and ANZ does not exist in the stock table, the value
of status is set to 100, and the condition specified in the breakpoint is met.
Program execution is suspended, and the Debugger windows appear as
shown in Figure 6-19.

Enter a stock number or press CTRL-B to scan stock list
Press ESC to write order

ORDER FORM

Customer Number: 108 Contact Name: Donald Quinn

Company Name: Quinn’s Sports
Address: 587 Alvarado

City: Redwood City State: CA Zip Code: 94063
Telephone: 415-544-8729

Order No:[] Order Date: 09/24/1987 PO Number: JR1447

Shipping Instructions: overnight delivery

Item No. Stock No. Code Description Quantity Price Total
[1] [5] [NRG] [tennis racquet] [12] [$28.00] [$336.00]
[] [] [] [] [] [] []
[] [] [] [] [] [] []
[] [] [] [] [] [] []

Running Total including Tax and Shipping Charges:[369.60]
===
Tracing Logic of the cust_order Program 6-31

Reaching the Second Breakpoint
Figure 6-19
Reaching the Second Breakpoint

When you set a breakpoint on an IF condition, execution is suspended when
the expression evaluates to TRUE. In this example, the value of status is set to
100 immediately following execution of the SELECT statement beginning at
line 205. The Source window highlights the next statement to execute when
program operation resumes. This is line 211:

211 IF status THEN

The Command window displays the function name, line number, and
module name at which the breakpoint occurred. This is line 211 in the
function get_item in the order module.

207 p_items[pa_curr].unit_price
208 FROM stock
209 WHERE stock.stock_num = p_items[pa_curr].stock_num
210 AND stock.manu_code = p_items[pa_curr].manu_code
211 IF status THEN
212 LET p_items[pa_curr].description = NULL
213 LET p_items[pa_curr].unit_price = NULL
214 END IF
215 DISPLAY p_items[pa_curr].description, p_items[pa_curr].

unit_pr(order.4gl:get_item)

$step
Stopped in add_order at line 25 in module "order.4gl"
$disable 3
Disabled point(s) 3.
$enable 4
Enabled point(s) 4.
$turn on autotoggle
$continue
Stopped in get_item at line 211 in module "order.4gl"
$

6-32 Guide to the IBM Informix 4GL Interactive Debugger

Resuming Operation Following the Second Breakpoint
Resuming Operation Following the Second Breakpoint
To add the current row successfully, one of the entered values must be
changed to produce a valid Stock No. and Code field combination. There are
two ways this can be accomplished:

■ You can resume execution, changing values as directed by the
program. This allows you to observe the program response to invalid
values and the feedback it provides to the user.

■ You can change the value of one of the variables using LET, and
reexecute the function that performs the lookup with the CALL
command. This allows you to continue execution following the
breakpoint with valid values.

This section illustrates the first of these approaches. The section “Executing a
Function Interactively” on page 6-35 illustrates the second approach and
shows how to use the Debugger to recall the get_item function.

To change field values as directed by the program

1. Enter the CONTINUE command or press F4.

The Debugger redisplays the Application screen, with the cursor
positioned in the Quantity field.

2. Enter a value of 10 in this field and press RETURN.

The appearance of the Application screen when you have made your
entry is as shown in Figure 6-20.
Tracing Logic of the cust_order Program 6-33

Resuming Operation Following the Second Breakpoint
Figure 6-20
Entering Invalid Values

The cursor returns to the Stock No. field, and the program displays
the following message:

A valid stock number, manufacturer, and quantity must all be entered

The program prevents you, therefore, from adding a new row to the
order until all three values required from the user are correct.

There is a valid item in the stock table with Stock No. entry of 6 and
a Code field entry of ANZ. To replace the current values with those for
this item, you should perform the following steps.

3. Change the value in the Stock No. field to 6, and press RETURN.

4. Press RETURN two more times to move the cursor through the Code
and Quantity fields.

Because the lookup of the current item is successful, the program
displays values in the remaining fields of this row and in the
Running Total including Tax and Shipping Charges field. It adds
this row to the p_items program array and positions the cursor in the
Stock No. field of the third row of the screen array. The appearance
of the Application screen after entry of this row is as shown in
Figure 6-21.

Enter a stock number or press CTRL-B to scan stock list
Press ESC to write order
--

ORDER FORM
--
Customer Number: 108 Contact Name: Donald Quinn

Company Name: Quinn’s Sports
Address: 587 Alvarado

City: Redwood City State: CA Zip Code: 94063
Telephone: 415-544-8729

--
Order No:[] Order Date: 09/24/1987 PO Number: JR1447

Shipping Instructions: overnight delivery
--
Item No. Stock No. Code Description Quantity Price Total
[1] [5] [NRG] [tennis racquet] [12] [$28.00] [$336.00]
[] [1] [ANZ] [] [10] [] []
[] [] [] [] [] [] []
[] [] [] [] [] [] []

Running Total including Tax and Shipping Charges:[$369.60]
A valid stock number, manufacturer, and quantity must all be entered
==
6-34 Guide to the IBM Informix 4GL Interactive Debugger

Executing a Function Interactively
Figure 6-21
Correcting Values Through the Program

Executing a Function Interactively
This section illustrates using Debugger commands to change an invalid value
and to reexecute the get_item function.

Enter the same invalid values as previously into the Stock No. and Code
fields. These values are 1 and ANZ.

As soon as you press RETURN to leave the Code field on this row, the value of
status is again set to 100. Because the breakpoint you have set at this
condition is still active, program execution is suspended again. Control
returns to the Debugger, which redisplays the Source and Command
windows as shown in Figure 6-22.

Enter a stock number or press CTRL-B to scan stock list
Press ESC to write order

ORDER FORM

Customer Number: 108 Contact Name: Donald Quinn

Company Name: Quinn’s Sports
Address: 587 Alvarado

City: Redwood City State: CA Zip Code: 94063
Telephone: 415-544-8729

Order No:[] Order Date: 09/24/1987 PO Number: JR1447

Shipping Instructions: overnight delivery

Item No. Stock No. Code Description Quantity Price Total
[1] [5] [NRG] [tennis racquet] [12] [$28.00] [$336.00]
[2] [6] [ANZ] [tennis ball] [10] [$48.00] [$480.00]
[] [] [] [] [] [] []
[] [] [] [] [] [] []

Running Total including Tax and Shipping Charges:[$897.60]
===
Tracing Logic of the cust_order Program 6-35

Executing a Function Interactively
Figure 6-22
Reaching the Second Breakpoint Again

The CALL Command

You can use the CALL command to execute a function interactively. In the
present example, you use the CALL command in conjunction with LET to
reexecute the get_item function with a different value following the new
occurrence of the breakpoint. You must use the parentheses when you call a
function. If the function has arguments, you must include them between the
parentheses.

You can also use the CALL command to execute a C function that has been
linked to your 4GL program from a library. There are, however, some restric-
tions on the Debugger commands that can be used with C functions. See
Appendix B, “Calling C Functions,” for procedures and examples of using
the Debugger with a 4GL program that calls C functions.

207 p_items[pa_curr].unit_price
208 FROM stock
209 WHERE stock.stock_num = p_items[pa_curr].stock_num
210 AND stock.manu_code = p_items[pa_curr].manu_code
211 IF status THEN
212 LET p_items[pa_curr].description = NULL
213 LET p_items[pa_curr].unit_price = NULL
214 END IF
215 DISPLAY p_items[pa_curr].description, p_items[pa_curr].unit_pr

(order.4gl:get_item)

$disable 3
Disabled point(s) 3.
$enable 4
Enabled point(s) 4.
$turn on autotoggle
$continue
Stopped in get_item at line 211 in module "order.4gl"
$continue
Stopped in get_item at line 211 in module "order.4gl"
$

CALL ()

MAIN

function

argument

,

6-36 Guide to the IBM Informix 4GL Interactive Debugger

Executing a Function Interactively
Changing a Value with the LET Command

Prior to recalling the get_item function, you want to change one of the
entered values so that it identifies a valid row. The current break in program
execution was produced when you entered 1 in the Stock No. field and ANZ
in the Code field.

There is a valid row in the stock table with Stock No. 1 and Code HRO.
Therefore, enter the LET command as follows to change the current value of
the variable p_items[pa_curr].manu_code from ANZ to HRO:

LET p_items[pa_curr].manu_code = "HRO"

You must place the values of character variables in quotes when using the
LET command.

Entering the CALL Command

You are now ready to reexecute the get_item function with the new value.

To reexecute the get_item function

1. Enter the CALL command as follows to reexecute the get_item
function with the values 1 and HRO:

CALL get_item()

2. Because you have turned the AUTOTOGGLE parameter back to ON,
the Debugger switches briefly to the Application screen when the
following statement executes:
215 DISPLAY p_items[pa_curr].description, p_items[pa_curr].unit_price
216 TO s_items[sc_curr].description, p_items[sc_curr].unit_price

When the get_item function terminates, the Source and Command
windows reappear as shown in Figure 6-23.
Tracing Logic of the cust_order Program 6-37

Executing a Function Interactively
Figure 6-23
Calling the get_item Function

Appearance of the Source Window

When you use the CALL command, the called function executes completely.
Program control then returns to the point in the program from which you
issued the call.

Because line 211 in the order module was the next statement to execute when
you entered the command:

CALL get_item()

this statement is highlighted in the Source window when the get_item
function terminates.

207 p_items[pa_curr].unit_price
208 FROM stock
209 WHERE stock.stock_num = p_items[pa_curr].stock_num
210 AND stock.manu_code = p_items[pa_curr].manu_code
211 IF status THEN
212 LET p_items[pa_curr].description = NULL
213 LET p_items[pa_curr].unit_price = NULL
214 END IF
215 DISPLAY p_items[pa_curr].description, p_items[pa_curr]

.unit_pr(order.4gl:get_item)

$turn on autotoggle
$continue
Stopped in get_item at line 211 in module "order.4gl"
$continue
Stopped in get_item at line 211 in module "order.4gl"
$let p_items[pa_curr].manu_code = "HRO"
$call get_item()
Return from get_item at line 220
Stopped in get_item at line 211 in module "order.4gl"
$

6-38 Guide to the IBM Informix 4GL Interactive Debugger

Executing a Function Interactively
Appearance of the Command Window

The Debugger outputs the following information in the Command window:

■ The line number at which the function terminated. This is line 220.

■ The function name, line number, and module name at which
execution stopped. This is line 211, which is the next statement to
execute when operation resumes.

Resuming Operation After CALL

The first statement to execute when operation resumes is line 211:

211 IF STATUS THEN

To resume operation

1. Enter the CONTINUE command or press F4 to resume operation with
this statement.

Because you have used the LET command to produce a valid Stock
No. and Code combination, the value of status is 0, and no break
occurs. The remaining statements of the get_item function execute,
and control returns to add_order.

When the Debugger redisplays the Application screen, the
Description and Price are displayed for the new item, and the cursor
is positioned in the Quantity field, as shown in Figure 6-24.
Tracing Logic of the cust_order Program 6-39

Executing a Function Interactively
Figure 6-24
Resuming Operation After CALL

2. Enter 6 in this field and press RETURN to add the current row.

As soon as you press RETURN, the cursor leaves the third row of the
screen array, and the value ANZ in the Code field is replaced with the
value HRO.

Enter the item quantity
Press ESC to write order
--

ORDER FOR
--
Customer Number: 108 Contact Name: Donald Quinn

Company Name: Quinn’s Sports
Address: 587 Alvarado

City: Redwood City State: CA Zip Code: 94063
Telephone: 415-544-8729

--
Order No:[] Order Date: 09/24/1987 PO Number: JR1447

Shipping Instructions: overnight delivery
--
Item No. Stock No. Code Description Quantity Price Total
[1] [5] [NRG] [tennis racquet] [12] [$28.00] [$336.00]
[2] [6] [ANZ] [tennis ball] [10] [$48.00] [$480.00]
[] [1] [ANZ] [baseball gloves] [] [$250.00] []
[] [] [] [] [] [] []

Running Total including Tax and Shipping Charges:[$897.60]
==
6-40 Guide to the IBM Informix 4GL Interactive Debugger

Execution of the Tracepoints
Execution of the Tracepoints
In carrying out the debugging steps in this chapter, you have entered three
items for a customer order.

To review the tracepoints

1. Press ESC to terminate your order entry and to insert the order and
item information into the database.

The program displays the message Order added as the order is
added to the database.

As soon as you press ESC, add_order executes the following
statement at line 92:

92 CALL insert_order()

The insert_order function in turn calls the insert_items function as
follows:

110 IF NOT insert_items() THEN

At the beginning of this chapter, you set active tracepoints on both
the insert_order and the insert_items functions. Both of these trace-
points generate their output now that order entry is complete.

2. Choose the Exit option to terminate the program and return the
cursor to the Command window.

3. Use the LIST TRACE command to review these tracepoints.

Figure 6-25 illustrates the Debugger response to this command:
Tracing Logic of the cust_order Program 6-41

Contents of the order1 File
Figure 6-25
Listing the Tracepoints

Contents of the order1 File
Because you redirected the output of the tracepoints to the file order1, no
information is displayed in the Command window. Instead, a file with the
name order1 is created in the current directory when the first tracepoint
generates output, and the output of both tracepoints is written to it.

The order of the information written to the order1 file reflects the nesting of
the functions insert_order and insert_items. You can use the exclamation
point (!) to escape from the Debugger to the operating system and view this
file.

16 COMMAND "Find-order" "Look up and display orders"
17 CALL find_order()
18 COMMAND "Exit" "Exit program and return to operating system"
19 CLEAR SCREEN
20 EXIT PROGRAM
21 END MENU
22
23 END MAIN
24

(main.4gl:main)

ENABLED TRACE POINTS:
(1) trace in function insert_order [order.4gl]

execute: {print p_orders}
append: order1
scope function: insert_order

(2) trace in function insert_items [order.4gl]
execute: {print p_items}
append: order1
scope function: insert_items

$

6-42 Guide to the IBM Informix 4GL Interactive Debugger

Contents of the order1 File
To view the contents of order1

1. Enter an exclamation point followed by the appropriate operating
system command (such as cat, more, or page).

For example:
!cat order1

2. Press any key to return the cursor to the Command window.

The following example lists the contents of the order1 file:
Enter insert_order() from add_order line 92
global:p_orders = record

order_num = 0
order_date = 09/24/1987
po_num = "JR1147 "
ship_instruct = "overnight delivery

"
end record
Enter insert_items() from insert_order line 110
global:p_items = {

item_num = 1
stock_num = 5
manu_code = "NRG"
description = "tennis racquet "
quantity = 12
unit_price = $28.00
total_price = $336.00
item_num = 2
stock_num = 6
manu_code = "ANZ"
description = "tennis ball "
quantity = 10
unit_price = $48.00
total_price = $480.00
item_num = 3
stock_num = 1
manu_code = "HRO"
description = "baseball gloves"
quantity = 6
unit_price = $250.00
total_price = $1500.00
item_num = (null)
stock_num = (null)
manu_code = (null)
description = (null)
quantity = (null)
unit_price = (null)
total_price = (null)
item_num = 0
stock_num = 0
manu_code = (null)
description = (null)
Tracing Logic of the cust_order Program 6-43

Contents of the order1 File
quantity = 0
unit_price = (null)
total_price = (null)
item_num = 0
stock_num = 0
manu_code = (null)
description = (null)
quantity = 0
unit_price = (null)
total_price = (null)
item_num = 0
stock_num = 0
manu_code = (null)
description = (null)
quantity = 0
unit_price = (null)
total_price = (null)
item_num = 0
stock_num = 0
manu_code = (null)
description = (null)
quantity = 0
unit_price = (null)
total_price = (null)
item_num = 0
stock_num = 0
manu_code = (null)
description = (null)
quantity = 0
unit_price = (null)
total_price = (null)
item_num = 0
stock_num = 0
manu_code = (null)
description = (null)
quantity = 0
unit_price = (null)
total_price = (null)

}
Return (1) from insert_items at line 179
Return from insert_order at line 119

Output of the First Tracepoint

The command trace insert_order is responsible for the first and last lines of
the file. They record when the insert_order function is called and when it
ends execution:

Enter insert_order() from add_order line 92
...

Return from insert_order at line 119
6-44 Guide to the IBM Informix 4GL Interactive Debugger

Contents of the order1 File
The instruction { print p_orders } is responsible for the following lines of
output:

global:p_orders = record
order_num = 0
order_date = 09/24/1987
po_num = "JR1147 "
ship_instruct = "overnight delivery "

end record

These lines display the values of the members of the p_orders program
record when the insert_order function was entered. The values for the
order_date, po_num, and ship_instruct variables are those entered by you.
The value of the order_num variable has not yet been assigned when the
insert_order function is called, and it is initialized to 0.

Output of the Second Tracepoint

The command trace insert_items is responsible for the eighth and the second
from the last lines of the file. They record when the insert_items function is
called and when it ends execution:

Enter insert_items() from insert_order line 110
....

Return (1) from insert_items at line 179

Because insert_items returns the value 1, or TRUE, to the calling function, this
information is listed in the output of the TRACE command as well.

The instruction { print p_items } is responsible for the remaining lines of
output to order1. These lines display the values in each row of the p_items
program array when the insert_items function was called. The appearance of
the first filled row is as follows:

item_num = 1
stock_num = 5
manu_code = "NRG"
description = "tennis racquet "
quantity = 12
unit_price = $28.00
total_price = $336.00

The values of the stock_num, manu_code, and quantity variables for each
row are entered by you. The remaining values for each row are looked up or
calculated by the program. The values of the members of the rows that are
not filled are initialized to 0 or NULL.
Tracing Logic of the cust_order Program 6-45

Chapter Summary
Chapter Summary
You can define tracepoints and breakpoints without enabling them. This
makes it possible to define multiple points at the beginning of a debugging
session or in a .4db file and to enable, or activate, them as needed.

The STEP command gives you the option of executing all the statements in a
function as a unit or as individual steps. When you use STEP to execute a
function call, all the statements in the function are treated as a unit. When you
use STEP with the INTO option, the Debugger highlights the first executable
statement in the function and allows you to execute the statements in the
function individually.

You can use the CALL command to execute a function interactively. Using the
CALL command can save you time by allowing you to go immediately to a
program segment that you want to examine or want to reexecute with
different values. When you use the CALL command, program control returns
to the point from which you issued the call.
6-46 Guide to the IBM Informix 4GL Interactive Debugger

7
Chapter
Analyzing Runtime Errors in the
cust_order Program
In This Chapter . 7-3

Encountering Runtime Errors 7-4
Fatal Errors When Running a Program 7-4
Fatal Errors When Debugging a Program 7-4

Starting the Session 7-5

Fatal Error #1: Exceeding Terminal Display Limits 7-6
Producing the First Error 7-7
The WHERE Command 7-10

Output of the WHERE Command 7-11
Viewing the Calling Function in the Source Window 7-11

A Possible Solution 7-13

Fatal Error #2: Exceeding Array Bounds 7-14
Producing the Second Error 7-17
The VARIABLE Command 7-18
The PRINT Command 7-20
A Possible Solution 7-21

Correcting the Program 7-22
Correcting the order Module 7-23

Recompiling the Program 7-23

Verifying the Corrections 7-24

Chapter Summary 7-26

7-2 Guid
e to the IBM Informix 4GL Interactive Debugger

In This Chapter
This chapter uses the cust_order program introduced in Chapter 5, “A Multi-
Module Program: cust_order,” to illustrate operation of the Debugger when
fatal errors occur. Two intentional bugs have been coded into the program for
this purpose. This chapter introduces several new Debugger commands and
shows how they can be used to easily diagnose the cause of these two
common runtime errors. It then shows you how to make the appropriate
corrections and how to recompile the cust_order program. The following
topics are covered in this chapter:

■ The appearance of the Source and Command windows when a fatal
error occurs

■ The use of the VARIABLE command to display the definition of a
program variable

■ The use of the WHERE command to list the functions that have been
called leading up to the current INFORMIX-4GL statement

■ Use of the Programmer’s Environment to correct and recompile the
program
Analyzing Runtime Errors in the cust_order Program 7-3

Encountering Runtime Errors
Encountering Runtime Errors
Under certain conditions the cust_order program produces runtime errors
that abort the operation of the program.

Fatal Errors When Running a Program
When an 4GL program is running outside the Debugger, a fatal error by
default causes program execution to terminate. An error number and
message appear on the screen.

You can specify the action your program should take if a runtime error occurs
by using the WHENEVER ERROR statement with the options CONTINUE,
CALL, and GOTO. (See the INFORMIX-4GL Reference for more information on
the WHENEVER ERROR statement.)

Fatal Errors When Debugging a Program
When a fatal error occurs in a program that is running through the Debugger,
the following actions take place:

■ Control returns immediately to the Debugger, which displays the
Source and Command windows.

■ The Source window highlights the statement at which execution
terminated.

■ The Command window displays the information that a fatal error
has occurred, as well as the function name, line number, and module
name at which the error occurred.

If you have included WHENEVER ERROR statements in your program, the
Debugger executes these statements if possible rather than terminating
execution. If the program cannot recover from the error, the Debugger takes
the action described above.

You can perform diagnostic tests following a fatal error to determine its
cause. You can then rerun the program with the RUN command or recall a
particular function with the CALL command. You cannot resume program
execution following a fatal error with the CONTINUE or STEP command.
7-4 Guide to the IBM Informix 4GL Interactive Debugger

Starting the Session
Starting the Session
You should initiate the debugging session as in the previous two chapters.

To start the debugging session

1. Choose the Debug option from the PROGRAM menu.

2. Choose the cust_order program.

If you have exited from the Debugger but have not exited from the
Programmer’s Environment since working with the examples in
Chapter 6, “Tracing Logic of the cust_order Program,” the two trace-
points and two breakpoints that you defined in that chapter are
automatically restored. Use the DISABLE command with the option
ALL to disable any active tracepoints or breakpoints before
proceeding with the examples in this chapter.

3. When the Debugger windows appear on the screen, enter run or
press F5 to begin operation, as shown in Figure 7-1.

Figure 7-1
Starting the Session

5 MAIN
6
7 DEFER INTERRUPT
8
9
10
11 OPEN FORM order_form FROM "orderform"
12 DISPLAY FORM order_form
13 ATTRIBUTE(MAGENTA)

(main.4gl:main)

$run
Analyzing Runtime Errors in the cust_order Program 7-5

Fatal Error #1: Exceeding Terminal Display Limits
Fatal Error #1: Exceeding Terminal Display Limits
The cust_order program uses the query_customer function to retrieve a
customer for whom to place an order. This function is called as soon as you
choose the Add-order option from the cust_order program menu. The
add_order function checks to see if the value returned by query_customer is
1 (TRUE), or 0 (FALSE), and assigns this value to the module variable
query_stat. The following figure lists the block of code in the add_order
function where the call to query_customer is made and where the value of
query_stat is assigned:

7 FUNCTION add_order()
8 DEFINE pa_curr, s_curr INTEGER
9
10 LET query_stat = query_customer()
11 IF query_stat = 0 THEN
12 RETURN
13 END IF
14 DISPLAY BY NAME p_customer.* ATTRIBUTE(CYAN)

If a customer both exists and is selected, query_customer returns a value of
TRUE. It returns a value of FALSE under either of the following conditions:

■ No customer exists with the specified search criteria.

■ No customer is selected through the Select menu option.

In either of these cases, the program is designed to display a message and to
return the cursor to the program menu so that you can make another
selection.

If no customer exists, the program executes the following lines of the
query_customer function:

126 IF NOT exist THEN
127 CLEAR FORM
128 CALL mess("No customer satisfies query", mrow)
129 LET p_customer.customer_num = NULL
130 RETURN (FALSE)
131 END IF
7-6 Guide to the IBM Informix 4GL Interactive Debugger

Producing the First Error
If no customer is selected, the program executes the following lines of the
query_customer function:

132 IF NOT chosen THEN
133 CLEAR FORM
134 CALL mess("No selection made", mrow)
135 LET p_customer.customer_num = NULL
136 RETURN (FALSE)
137 END IF

In both cases, query_customer calls the mess function. It passes two
arguments to the mess function:

■ A character string that determines the message to display

■ The variable mrow, which determines at which row on the terminal
screen the message is to display

The contents of the mess function are as follows:

27 FUNCTION mess(str, mrow)
28 DEFINE str CHAR(80),
29 mrow SMALLINT
30
31 DISPLAY " ", str CLIPPED AT mrow,1
32 SLEEP 3
33 DISPLAY "" AT mrow,1
34 END FUNCTION

Producing the First Error
Both situations in which the query_customer function returns FALSE result
in a fatal error.

To produce the first error

1. Choose the Add-order option from the cust_order program menu.

2. Enter the invalid search criterion Customer Number > 200, as shown
in Figure 7-2, and press ESC.
Analyzing Runtime Errors in the cust_order Program 7-7

Producing the First Error
Figure 7-2
Entering Invalid Search Criteria

Because there are no customers in the stores7 database with customer
numbers greater than 200, the value of exist is set to FALSE. If exist is FALSE,
the program should display the following message and return the cursor to
the program menu:

No customer satisfies query

Instead, entering the invalid search criterion produces a fatal error. Program
execution terminates, and the Source and Command windows redisplay as
shown in Figure 7-3.

Enter criteria for selection
--

ORDER FORM
--
Customer Number:[>200] Contact Name:[][]

Company Name:[]
Address:[][]

City:[] State:[] Zip Code:[]
Telephone:[]

--
Order No:[] Order Date:[] PO Number:[]

Shipping Instructions:[]
--
Item No. Stock No. Code Description Quantity Price Total
[] [] [] [] [] [] []
[] [] [] [] [] [] []
[] [] [] [] [] [] []
[] [] [] [] [] [] []

Running Total including Tax and Shipping Charges:[]
==
7-8 Guide to the IBM Informix 4GL Interactive Debugger

Producing the First Error
Figure 7-3
Exceeding Terminal Display Limits

When a fatal error occurs, the Debugger highlights in the Source window the
line at which the fatal error occurred. In the present example, this is line 31 in
the main module:

31 DISPLAY " ", str CLIPPED AT mrow,1

The Debugger outputs to the Command window the function name, line
number, and module name at which the error occurred. It also displays the
error number and corresponding error message. In the present example, this
is error number -1135:

Fatal error in mess at line 31 in module "main.4gl"
-1135: The row or column number in DISPLAY AT exceeds the limits of
your terminal.

The DISPLAY AT statement displays a message at a specific row and column
of the terminal screen. This error indicates that the value of mrow, which
determines the row at which a message is to display on the screen, is not
valid.

27 FUNCTION mess(str, mrow)
28 DEFINE str CHAR(80),
29 mrow SMALLINT
30
31 DISPLAY " ", str CLIPPED AT mrow,1
32 SLEEP 3
33 DISPLAY "" AT mrow,1
34 END FUNCTION
35

(main.4gl:mess)

$run
Fatal error in mess at line 31 in module "main.4gl"
-1135: The row or column number in DISPLAY AT exceeds the limits of

your terminal
$

Analyzing Runtime Errors in the cust_order Program 7-9

The WHERE Command
The WHERE Command
The following diagram describes the syntax of the WHERE command.

You are now ready to perform diagnostic tests to determine the cause of the
error. You could, for example, use the PRINT command with which you are
already familiar to display the value of the variable mrow and to verify that
the number assigned to it is not a valid row number for the terminal. In
diagnosing the cause of the error, however, it would also be useful to know
how mrow received its value.

You can use the WHERE command to display all of the functions that have
been called leading up to the current 4GL statement. If any of the functions
are called with parameters, the values of these parameters are displayed
as well.

Enter where to display the path that the program has taken in arriving at
line 31. Figure 7-4 illustrates your entry of the WHERE command and the
Debugger output.

WHERE

>> filename
7-10 Guide to the IBM Informix 4GL Interactive Debugger

The WHERE Command
Figure 7-4
The WHERE Command

Output of the WHERE Command

The Debugger lists the functions called leading up to the current statement in
reverse chronological order of their execution. In the present example, the
current function is mess. You see that this function received two parameters
when it was called and that the calling function was query_customer. The
first parameter, str, has the value:

"No customer satisfies query"

The second parameter, mrow, has a value of 0. This is the value that
produced the fatal error because 0 is not a valid coordinate for the DISPLAY
AT statement.

Viewing the Calling Function in the Source Window

You see also from the output of the WHERE command that these values were
determined in line 128 of the calling function query_customer. This function
is in the module main, which is currently displayed in the Source window.

27 FUNCTION mess(str, mrow)
28 DEFINE str CHAR(80),
29 mrow SMALLINT
30
31 DISPLAY " ", str CLIPPED AT mrow,1
32 SLEEP 3
33 DISPLAY "" AT mrow,1
34 END FUNCTION
35

(main.4gl:mess)

Fatal error in mess at line 31 in module "main.4gl"
-1135: The row or column number in DISPLAY AT exceeds the limits

of your terminal
$where
mess(str = "No customer satisfies query

", mrow = 0) at line 31 in main.4gl
query_customer() at line 128 in main.4gl
add_order() at line 10 in order.4gl
main() at line 15 in main.4gl
$

Analyzing Runtime Errors in the cust_order Program 7-11

The WHERE Command
To view the calling function

1. Enter the VIEW command to move the cursor to the Source window
and examine this module.

2. Move to line 128 of the module by typing 128, followed by RETURN.

The Source window displays the lines of code shown in Figure 7-5.

Figure 7-5
Examining the Calling Function in the Source Window

3. Use UP ARROW and DOWN ARROW or the cursor movement CTRL keys
described in Chapter 2, “Getting Started with the Debugger,” to
scroll the query_customer function through the Source window.

You can observe that while the variable mrow is defined at line 65 of
this function and is passed as a parameter to the mess function, it is
never assigned a value in query_customer. Also, because mrow does
not appear as an argument of query_customer, it cannot receive its
value from outside the function.

The programmer, therefore, has defined this variable in the program
with the intention of providing flexibility in the coordinates of the
DISPLAY AT statement but has failed to assign it a value.

4. Press the Interrupt key when you are finished to return the cursor to
the Command window.

124
125 CALL clear_menu()
126 IF NOT exist THEN
127 CLEAR FORM
128 CALL mess("No customer satisfies query", mrow)
129 LET p_customer.customer_num = NULL
130 RETURN (FALSE)
131 END IF
132 IF NOT chosen THEN

(main.4gl:query_customer)

-1135: The row or column number in DISPLAY AT exceeds the limits of
your terminal

$where
mess(str = "No customer satisfies query

", mrow = 0) at line 31 in main.4gl
query_customer() at line 128 in main.4gl
add_order() at line 10 in order.4gl
main() at line 15 in main.4gl
$view
7-12 Guide to the IBM Informix 4GL Interactive Debugger

A Possible Solution
A Possible Solution
In order for the cust_order program to work correctly, you must assign a
value to mrow. There are several ways that this might be accomplished. One
solution is to carry out the following activities:

■ Make mrow an argument of the query_customer function as follows:
61 FUNCTION query_customer(mrow)

■ Pass a value for mrow when the query_customer function is called
by add_order, as follows:

10 LET query_stat = query_customer(2)

In this way, the value of mrow is set to 2 when query_customer is called, and
the resulting coordinates of the DISPLAY AT statement at line 31 are now 2,1:

31 DISPLAY " ", str CLIPPED AT mrow, 1

When this change is made, the messages:

No customer satisfies query

and:

No selection made

appear, beginning in the first column of the second line of the terminal screen.

“Correcting the Program” on page 7-22 provides instructions on making
these changes to the cust_order program modules and on recompiling the
program.
Analyzing Runtime Errors in the cust_order Program 7-13

Fatal Error #2: Exceeding Array Bounds
Fatal Error #2: Exceeding Array Bounds
In the previous chapter, you placed an item on a customer order by making
entries in the Stock No. and Code fields on the form. The cust_order program
is designed to give you the option of viewing a list of available stock items in
a window when placing an order and of making a selection directly from this
list. An error occurs, however, when you use this option.

To produce fatal error #2

1. Enter the RUN command or press F5 to restart operation of the
Debugger.

2. Choose the Add-order option from the cust_order program menu.

3. Enter search criteria for customer 109, Jane Miller, and press ESC.

4. Choose the Select option from the BROWSE menu to select this
customer.

5. Enter sample values for the fields labeled Order Date, PO Number,
and Shipping Instructions, and press RETURN.

Figure 7-6 illustrates the appearance of the screen with some sample order
information for Jane Miller.
7-14 Guide to the IBM Informix 4GL Interactive Debugger

Fatal Error #2: Exceeding Array Bounds
Figure 7-6
Entering Order Information

The listing of stock items to a window, which produces the fatal error, is
implemented by means of an ON KEY clause within the INPUT ARRAY block.
This block of code is initiated by the following statement:

25 INPUT ARRAY p_items FROM s_items.*

The 4GL statements that execute if the user presses CTRL-B in either of the
designated fields are as follows:

40 ON KEY (CONTROL-B)
41 IF INFIELD(stock_num) OR INFIELD(manu_code) THEN
42 LET pa_curr = arr_curr()
43 LET s_curr = scr_line()
44 CALL fetch_stock()
45 CALL get_stock() RETURNING
46 p_items[pa_curr].stock_num, p_items[pa_curr].manu_code,
47 p_items[pa_curr].description, p_items[pa_curr].unit_price
48 DISPLAY p_items[pa_curr].stock_num
49 TO s_items[s_curr].stock_num
50 DISPLAY p_items[pa_curr].manu_code
51 TO s_items[s_curr].manu_code
52 DISPLAY p_items[pa_curr].description
53 TO s_items[s_curr].description
54 DISPLAY p_items[pa_curr].unit_price
55 TO s_items[s_curr].unit_price
56 NEXT FIELD quantity
57 END IF

Enter a stock number or press CTRL-B to scan stock list
Press ESC to write order

ORDER FORM

Customer Number:[109] Contact Name:[Jane][Miller]

Company Name:[Sport Stuff]
Address:[Mayfair Mart][7345 Ross Blvd.]

City:[Sunnyvale] State:[CA] Zip Code:[94086]
Telephone:[408-723-8789]

Order No:[] Order Date:[07/08/1987] PO Number:[J90681]

Shipping Instructions:[fed ex]

Item No. Stock No. Code Description Quantity Price Total
[] [] [] [] [] [] []
[] [] [] [] [] [] []
[] [] [] [] [] [] []
[] [] [] [] [] [] []

Running Total including Tax and Shipping Charges:[]
===
Analyzing Runtime Errors in the cust_order Program 7-15

Fatal Error #2: Exceeding Array Bounds
If you press CTRL-B while the cursor is in either the stock_num field or the
manu_code field, the program calls the fetch_stock function. This function
declares the cursor stock_list and retrieves rows into the program array
p_stock by means of a FOREACH loop. The contents of the fetch_stock
function are as follows:

46 FUNCTION fetch_stock()
47
48 DECLARE stock_list CURSOR FOR
49 SELECT stock_num, manufact.manu_code,
50 manu_name, description, unit_price, unit_descr
51 FROM stock, manufact
52 WHERE stock.manu_code = manufact.manu_code
53 ORDER BY stock_num
54 LET stock_cnt = 1
55 FOREACH stock_list INTO p_stock[stock_cnt].*
56 LET stock_cnt = stock_cnt + 1
57 END FOREACH
58 LET stock_cnt = stock_cnt - 1
59 END FUNCTION

After the fetch_stock function executes, add_order calls the get_stock
function. This function opens the stock_w window with the stock_sel form,
and uses a DISPLAY ARRAY statement to display the stock items within this
window. The contents of the get_stock function are as follows:

183 FUNCTION get_stock()
184 DEFINE idx integer
185
186 OPEN WINDOW stock_w AT 7, 3
186 WITH FORM "stock_sel"
187 ATTRIBUTE(BORDER, YELLOW)
188 CALL set_count(stock_cnt)
189 DISPLAY " Use cursor using F3, F4, and arrow keys; press ESC ",
190 "to select a stock item" AT 1,1
192 DISPLAY ARRAY p_stock TO s_stock.*
193 LET idx = arr_curr()
194 CLOSE WINDOW stock_w
195 RETURN p_stock[idx].stock_num, p_stock[idx].manu_code,
196 p_stock[idx].description, p_stock[idx].unit_price
197 END FUNCTION

See Appendix C, “Sample Programs,” for more information on these
functions.
7-16 Guide to the IBM Informix 4GL Interactive Debugger

Producing the Second Error
Producing the Second Error
Enter CTRL-B to produce the second fatal error. Control returns to the
Debugger, which displays the Source and Command windows as shown in
Figure 7-7.

Figure 7-7
Exceeding Array Bounds

When a fatal error occurs, the Source window highlights the statement at
which program execution terminated. In this example, it is line 55 of the main
module:

55 FOREACH stock_list INTO p_stock[stock_cnt].*

The Debugger outputs to the Command window the function name, line
number, and module name at which the error occurred. It also displays the
error number and corresponding error message. In the present example, this
is error number -4509:

Fatal error in fetch_stock at line 55 in module "main.4gl"
-4509 An array variable has been referenced outside of its
dimensions.

51 FROM stock, manufact
52 WHERE stock.manu_code = manufact.manu_code
53 ORDER BY stock_num
54 LET stock_cnt = 1
55 FOREACH stock_list INTO p_stock[stock_cnt].*
56 LET stock_cnt = stock_cnt + 1
57 END FOREACH
58 LET stock_cnt = stock_cnt - 1
59 END FUNCTION

(main.4gl:fetch_stock)

", mrow = 0) at line 31 in main.4gl
query_customer() at line 128 in main.4gl
add_order() at line 10 in order.4gl
main() at line 15 in main.4gl
$view
$run
Fatal error in fetch_stock at line 55 in module "main.4gl"
-4509: An array variable has been referenced outside of its

specified dimensions.
$

Analyzing Runtime Errors in the cust_order Program 7-17

The VARIABLE Command
This error indicates that the index for the array was not initialized correctly,
or that the cursor attempted to retrieve a row from the database after all the
rows in the p_stock array had been filled.

The following two sections illustrate the use of the VARIABLE and PRINT
commands to quickly determine the cause of this error.

The VARIABLE Command
The following diagram illustrates the syntax of the VARIABLE commands.

The VARIABLE command provides a convenient way to see the declaration of
program variables. Use it to avoid having to search the source module or
modules for the DEFINE statements associated with particular variables.

For example, enter the following command to display the record members,
data types, and, most importantly, the number of elements of the p_stock
program array:

variable p_stock

The VARIABLE command outputs the following information to the
Command window or, optionally, to a file:

■ The data type of a simple program variable

■ The record members and data types of a program record

■ The members, data types, and number of elements of a program
array

GLOBALS

VARIABLE Variable

>> filename

ALL
7-18 Guide to the IBM Informix 4GL Interactive Debugger

The VARIABLE Command
You can use the VARIABLE command with the GLOBALS option to display the
declarations of all global and module variables in the current function. If you
specify the ALL option, the VARIABLE command displays the declarations of
all global, module, and local variables in the current function. If you do not
specify an option or variable name, the VARIABLE command displays the
declaration of all local variables in the current function. See Chapter 9, “The
Debugger Commands,” for more information on the VARIABLE command
and its options.

Figure 7-8 illustrates the output of the VARIABLE command in the Command
window.

Figure 7-8
Output from the VARIABLE Command

You see from this example that p_stock was defined as an array of 15
elements.

51 FROM stock, manufact
52 WHERE stock.manu_code = manufact.manu_code
53 ORDER BY stock_num
54 LET stock_cnt = 1
55 FOREACH stock_list INTO p_stock[stock_cnt].*
56 LET stock_cnt = stock_cnt + 1
57 END FOREACH
58 LET stock_cnt = stock_cnt - 1
59 END FUNCTION

(main.4gl:fetch_stock)

sions.
$variable p_stock
global:p_stock type ARRAY [15] of RECORD

stock_num type SMALLINT
manu_code type CHAR[3]
manu_name type CHAR[15]
description type CHAR[15]
unit_price type MONEY(6,2)
unit_descr type CHAR[15]

$

Analyzing Runtime Errors in the cust_order Program 7-19

The PRINT Command
The PRINT Command
You are also interested in knowing the value of the stock_cnt variable, which
provides the subscript for the array p_stock. You can use the PRINT
command with which you are already familiar to display the value of this
variable.

Enter the PRINT command as follows to display the current value assigned
by the program to stock_cnt:

print stock_cnt

Figure 7-9 illustrates the output of the PRINT command to the Command
window.

Figure 7-9
The PRINT Command

You see from this command that the value assigned to stock_cnt when
program execution terminated was 16. This produced the fatal error because
the number of elements allotted for the p_stock program array is 15.

51 FROM stock, manufact
52 WHERE stock.manu_code = manufact.manu_code
53 ORDER BY stock_num
54 LET stock_cnt = 1
55 FOREACH stock_list INTO p_stock[stock_cnt].*
56 LET stock_cnt = stock_cnt + 1
57 END FOREACH
58 LET stock_cnt = stock_cnt - 1
59 END FUNCTION

(main.4gl:fetch_stock)

global:p_stock type ARRAY [15] of RECORD
stock_num type SMALLINT
manu_code type CHAR[3]
manu_name type CHAR[15]
description type CHAR[15]
unit_price type MONEY(6,2)
unit_descr type CHAR[15]

$print stock_cnt
global:stock_cnt = 16
$

7-20 Guide to the IBM Informix 4GL Interactive Debugger

A Possible Solution
A Possible Solution
To prevent this error from reoccurring any time the number of stock items in
the database exceeds 15, you should amend the fetch_stock function as
follows to include a test for the upper limit of the array:

IF stock_cnt > 15 THEN
EXIT FOREACH

END IF

This test should occur right after the value of stock_cnt is incremented in
line 56:

56 LET stock_cnt = stock_cnt + 1

Following is the complete text of the fetch_stock function with these lines
incorporated:

FUNCTION fetch_stock()

DECLARE stock_list CURSOR FOR
SELECT stock_num, manufact.manu_code,

manu_name, description, unit_price, unit_descr
FROM stock, manufact
WHERE stock.manu_code = manufact.manu_code
ORDER BY stock_num

LET stock_cnt = 1
FOREACH stock_list INTO p_stock[stock_cnt].*

LET stock_cnt = stock_cnt + 1
IF stock_cnt > 15 THEN

EXIT FOREACH
END IF

END FOREACH
LET stock_cnt = stock_cnt - 1

END FUNCTION

You can also increase the size of the program array because you know that
the number of stock items in the database exceeds 15. However, you should
include a similar test to prevent array bounds from being exceeded in the
future as new items are added to the stock table.

The next section shows you how to correct both of the fatal errors examined
in this chapter and how to recompile the cust_order program.

Use the EXIT command or press F9 to exit from the Debugger and return to
the PROGRAM menu.
Analyzing Runtime Errors in the cust_order Program 7-21

Correcting the Program
Correcting the Program
To correct the two errors, you need to make two modifications to the main
module, and one modification to the order module.

To make the corrections to the main module

1. Choose the Exit option to return to the INFORMIX-4GL menu.

2. Choose the Module option from the INFORMIX-4GL menu.

3. Choose the Modify option from the MODULE menu.

4. Choose main as the module to modify.

The first correction involves modifying the code of the fetch_stock
function to test for the boundaries of the p_stock array.

5. Use the system editor to move to line 56 of this module:
56 LET stock_cnt = stock_cnt + 1

6. Insert the next three lines immediately following this statement:
57 IF stock_cnt > 15 THEN
58 EXIT FOREACH
59 END IF

The second correction to this module involves modifying the
query_customer function so that it is called with mrow as an
argument. This is the first step required to correct the problem of
exceeding the terminal display limits.

7. Use the system editor to move to what is now line 64:
64 FUNCTION query_customer()

8. Make the variable mrow an argument of the query_customer
function as follows:

64 FUNCTION query_customer(mrow)

9. Save the file using the command appropriate to your system editor.

10. Choose the option Save-and-Exit when the MODIFY MODULE menu
appears on the screen.
7-22 Guide to the IBM Informix 4GL Interactive Debugger

Correcting the order Module
Correcting the order Module
A second change is required to correct the problem of exceeding the terminal
display limits. This change involves modifying the add_order function so
that query_customer is called with an argument that provides the value for
mrow. The add_order function is located in the order module.

To access the order module

1. Choose the Modify option from the MODULE menu.

2. Choose the order module.

3. Use the system editor to move to line 10:
10 LET query_stat = query_customer()

4. Modify this line as follows to pass 2 as the argument to the
query_customer function:

10 LET query_stat = query_customer(2)

5. Save the file using the command appropriate to your system editor.

6. Choose the Save-and-Exit option when the MODIFY MODULE menu
appears on the screen, as in the previous example.

Recompiling the Program
You are now ready to recompile the cust_order program, incorporating your
corrections.

To recompile the program

1. Choose the Program_Compile option from the MODULE menu.

2. Choose the cust_order program.

The Program_Compile option recompiles only those modules that
have been altered since the last compilation. The name of each
module you have modified is displayed on the screen as the module
compiles. Figure 7-10 illustrates the appearance of the screen when
the second module has begun the process of recompilation.
Analyzing Runtime Errors in the cust_order Program 7-23

Verifying the Corrections
Figure 7-10
Recompiling the cust_order Program

When the process is complete, you should see the message:
Program successfully compiled.

3. If errors are discovered in the course of the compilation, choose the
Modify option to correct the affected module.

Verifying the Corrections
You should rerun the program to verify that the errors have been corrected.
Rerun the program by choosing either the Run or the Debug option from
either the MODULE menu or the PROGRAM menu.

To verify that you have corrected the problem of exceeding the terminal display
limits

1. Choose the Add-Order option from the cust_order program menu.

2. Enter the invalid search criterion that you entered previously to
produce the problem:

Customer Number [>200]

You see from Figure 7-11 that the program correctly displays the
message:

No customer satisfies query

COMPILE PROGRAM >>
Choose a program with arrow keys or enter a name, and press RETURN.

-- Press CTRL-W for Help --------
Compiling Informix-4GL sources:

main.4gl
order.4gl

Compilation in progress...please wait.
7-24 Guide to the IBM Informix 4GL Interactive Debugger

Verifying the Corrections
Figure 7-11
Verifying the Correction of the First Error

To verify that you have corrected the problem of exceeding array bounds

1. Choose the Add-order option from the program menu.

2. Enter search criteria for one or more customers.

3. Choose the Select option to select a customer for whom to place an
order.

4. Enter sample order information.

5. Press CTRL-B to display the list of valid stock items to a window on
the screen.

You see from Figure 7-12 that the window now opens, and the stock items
appear.

No customer satisfies query

ORDER FORM

Customer Number:[>200] Contact Name:[][]

Company Name:[]
Address:[][]

City:[] State:[] Zip Code:[]
Telephone:[]

Order No:[] Order Date:[] PO Number:[]

Shipping Instructions:[]

Item No. Stock No. Code Description Quantity Price Total
[] [] [] [] [] [] []
[] [] [] [] [] [] []
[] [] [] [] [] [] []
[] [] [] [] [] [] []

Running Total including Tax and Shipping Charges:[]
===
Analyzing Runtime Errors in the cust_order Program 7-25

Chapter Summary
Figure 7-12
Verifying the Correction of the Second Error

Chapter Summary
When a 4GL program is running through the Debugger, a fatal error causes
control to return to the Debugger. The Source window highlights the line at
which program execution terminated. The Command window displays the
error number and message, as well as the line number, function name, and
module name at which the error occurred. The Debugger makes it easy to
diagnose the cause of fatal errors by allowing you to work with a program
even after it has aborted.

The VARIABLE command allows you to display the declaration of program
variables. The WHERE command allows you to display the functions that
have been called to arrive at the current 4GL statement. This command also
displays the parameters, if any, with which the functions were called.

To correct errors in a multi-module program, you must modify the individual
modules and recompile the program.

Enter a stock number or press CTRL-B to scan stock list
Press ESC to write order
--

ORDER FORM
--

For cursor use F3, F4, and arrow keys; press ESC to select a stock item

1 HRO Hero baseball gloves $250.00 10 gloves/case
1 HSK Husky baseball gloves $800.00 10 gloves/case
1 SMT Smith baseball gloves $450.00 10 gloves/case

--
Item No. Stock No. Code Description Quantity Price Total
[] [] [] [] [] [] []
[] [] [] [] [] [] []
[] [] [] [] [] [] []
[] [] [] [] [] [] []

Running Total including Tax and Shipping Charges: []
==
7-26 Guide to the IBM Informix 4GL Interactive Debugger

Chapter Summary
This chapter concludes the tutorial section of this manual. You now have a
working knowledge of the principal Debugger commands and capabilities,
and you should be able to use the Debugger productively with your own
programs. The remainder of this manual constitutes a reference guide. It
provides additional and detailed information on using the Debugger, as well
as the complete syntax of all the Debugger commands.
Analyzing Runtime Errors in the cust_order Program 7-27

8
Chapter
The Debugging Environment
In This Chapter . 8-3

Debugger Screens and Parameters 8-3

The Debugging Process 8-5
Working in the Programmer’s Environment 8-6

Creating a New Source Module 8-7
Revising an Existing Module 8-7
Compiling a Source Module 8-8
Combining Program Modules 8-9
Executing a Compiled Program 8-11
Invoking the Debugger. 8-11

Working at the Command Line 8-12
Creating or Modifying a 4GL Source File 8-14
Compiling a Source File 8-14
Concatenating Multi-Module Programs 8-16
Invoking the Debugger 8-17

Specifying the Source Program Search Path 8-19

Specifying Keyboard Aliases 8-20

The Debugger Screens and Windows 8-21
Descriptions of the Debugger Displays 8-22

Command Window 8-22
Source Window 8-23
Application Screen 8-24
Help Screen 8-24
Operating System Display 8-25

Setting Terminal Display Parameters 8-26

8-2 Guid
Parameters Controlled by the TURN Command 8-27
AUTOTOGGLE 8-27
DISPLAYSTOPS 8-27
EXITSOURCE 8-27
PRINTDELAY 8-28
SOURCETRACE 8-28

Parameters Controlled by the TIMEDELAY Command 8-29
TIMEDELAY SOURCE 8-29
TIMEDELAY COMMAND 8-30

Parameters Controlled by the GROW Command 8-30
SOURCE LINES 8-31
COMMAND LINES 8-31

The APPLICATION DEVICE Command 8-32

Establishing Breakpoints and Tracepoints 8-33
The BREAK Command 8-33

Interactions Among Breakpoints Set on Variables 8-35
Resuming Execution After a Breakpoint 8-36
Removing or Disabling a Breakpoint 8-36

The TRACE Command 8-37
Restrictions on BREAK and TRACE Commands 8-39

Displaying and Copying Parameters 8-40
Displaying Values with the LIST Command 8-40
Displaying Values with ALIAS 8-41
Displaying Values with USE 8-42
Saving Values with the WRITE Command 8-42
Establishing Values with the READ Command 8-44

Establishing Parameters from Files 8-45
Establishing System Default Parameters 8-45
Establishing User Default Parameters 8-45
Establishing Program Default Parameters 8-46
Using Nondefault .4db Files 8-46

Exiting from the Debugging Environment 8-49

Chapter Summary 8-50
e to the IBM Informix 4GL Interactive Debugger

In This Chapter
This chapter describes the user interface of the Debugger. Information
presented here will help you to control features of your debugging
environment. This chapter includes the following procedures:

■ Compiling and specifying the INFORMIX-4GL application program

■ Specifying the source file search path

■ Assigning keyboard aliases

■ Using the Debugger screens and windows

■ Specifying breakpoints and tracepoints

■ Saving debugging environment parameters in a file

Debugger Screens and Parameters
Part of this chapter describes the visual interface of the Debugger, whose
screens and windows can display 4GL program input, output, and source
code, as well as Debugger output and error messages. Additional displays
support Debugger help messages and output from operating system
commands.

Display/Window Information Displayed

Command window Debugger commands, error messages

Source window Application program source code

Application screen Output from the current 4GL program

Help screen Debugger help messages

Operating system display Output from operating system commands
The Debugging Environment 8-3

Debugger Screens and Parameters
Another section identifies the terminal display parameters and the Debugger
commands that can specify their values.

Another section identifies the commands to establish and control breakpoints
and tracepoints. It presents and explains many examples of the BREAK and
TRACE commands and summarizes restrictions on breakpoints.

This chapter also describes Debugger commands to display the current
values of all the debugging environment parameters, to save them in a file,
or to restore them from a file.

Parameter Controlling Command

AUTOTOGGLE TURN ON/OFF

DISPLAYSTOPS TURN ON/OFF

EXITSOURCE TURN ON/OFF

PRINTDELAY TURN ON/OFF

SOURCETRACE TURN ON/OFF

TIMEDELAY SOURCE TIMEDELAY

TIMEDELAY COMMAND TIMEDELAY

SOURCE LINES GROW

COMMAND LINES GROW

APPLICATION DEVICE APPLICATION DEVICE

Command Purpose

ALIAS Sets or displays function keys and aliases

LIST Displays current parameters on the screen

READ Replaces current parameters with file values

USE Sets or displays the source file search path

WRITE Saves current values in a disk file
8-4 Guide to the IBM Informix 4GL Interactive Debugger

The Debugging Process
Another section describes the use of .4db files to establish default user
interface parameters or to replace the current values.

Most of the commands and Debugger features that are described in this
chapter have been mentioned in earlier chapters of this manual.

See also the next chapter, which describes the Debugger command language
and presents the complete syntax of all the Debugger commands.

The Debugging Process
The INFORMIX-4GL Interactive Debugger is a source-language debugger for
developing 4GL programs. Its advanced multitasking features allow you to
choose from a broad range of debugging activities. It provides an
environment in which you can perform the following tasks:

■ Begin or suspend execution of a 4GL application program.

■ Monitor screen output from the 4GL program.

■ Provide keyboard input to the 4GL program.

■ Display the currently executing 4GL statements.

■ Enter commands to control 4GL program execution.

■ Display 4GL and Debugger diagnostic error messages.

■ Evaluate or modify 4GL program variables.

File Purpose

$INFORMIXDIR/etc/init.4db Sets systemwide defaults

$HOME/init.4db Sets defaults for a specific login account

program.4db Sets defaults for a specific program

other.4db Sets new current values (with READ or as a
command-line specification)
The Debugging Environment 8-5

Working in the Programmer’s Environment
You can invoke the Debugger from the menu system of the Programmer’s
Environment, or directly from the operating system prompt. Before you can
use the Debugger to analyze a 4GL program, you must first take the following
steps:

1. Create or modify a .4gl source file.

2. Compile the source file into a .4go p-code file.

3. Combine multiple .4go modules into a single .4gi file.

4. Invoke the Debugger, specifying a 4GL program.

Step 3 is not required if your program has only one module.

The Debugger does not modify your source files. If you discover errors in the
logic of a .4gl source file, the Debugger will help you to identify and analyze
the problem. To correct any errors, you must exit from the Debugger and
repeat the steps listed earlier. This section describes how to carry out these
steps, both from the Programmer’s Environment and from the system
prompt.

To operate correctly, the Debugger must have access to the source modules
and to the compiled p-code versions of your 4GL program. If these are not in
your current directory, you should read “Specifying the Source Program
Search Path” on page 8-19.

Working in the Programmer’s Environment
This section includes procedures for creating, revising, compiling, and
combining modules. It also describes how to execute a compiled program
and invoke the Debugger. Before you can perform any of these tasks,
however, you need to invoke the Programmer’s Environment.

If your software has been installed according to the instructions in your
installation letter, you can enter:

r4gl

at the system prompt to invoke the Programmer’s Environment. A sign-on
message is displayed, and after a pause, the INFORMIX-4GL menu appears.
See the INFORMIX-4GL Reference for more information about the syntax of the
r4gl command.
8-6 Guide to the IBM Informix 4GL Interactive Debugger

Working in the Programmer’s Environment
Creating a New Source Module

This section outlines the procedure for creating a new module. If your source
module already exists but needs to be modified, you should skip ahead to the
next section, “Revising an Existing Module.”

To create a source module

1. Choose the Module option from the INFORMIX-4GL menu.

2. If you are creating a new .4gl source module, press n to select the
New option of the MODULE menu.

3. Enter the name of the new module with the extension .4gl.

The name must begin with a letter and can include letters, numbers,
and underscores. The name must be unique among the files in the
same directory and among the other program modules if it will be
part of a multi-module program.

Revising an Existing Module

If you are revising an existing 4GL source file, rather than creating a new one,
the procedures to begin an editing session are slightly different from the steps
that were just described.

To revise a source module

1. Choose the Module option from the INFORMIX-4GL menu.

2. Select the Modify option of the MODULE menu.

The screen displays the filenames of all of the .4gl source modules in
the current directory and prompts you to select a source file to edit.

3. Use the arrow keys to highlight the name of a source module and
press RETURN, or enter a filename.

If you specified the name of an editor as the DBEDIT environment
variable, an editing session with that editor begins automatically. If
you did not specify a value for the DBEDIT environment variable, the
screen prompts you to identify the text editor that you want to use.
The Debugging Environment 8-7

Working in the Programmer’s Environment
4. Specify the name of a text editor, or press RETURN for vi, the default
editor.

Now you can begin an editing session by entering 4GL statements.
See the INFORMIX-4GL Reference for more information on
INFORMIX-4GL statements and programs.

5. When you have finished entering or editing your 4GL code, use an
appropriate editor command to save your source file and end the text
editing session.

Compiling a Source Module

The .4gl source file module that you create or modify is an ASCII file that must
be compiled before it can be executed. After you save your file and exit from
the editor, the screen prompts you to choose from among Compile,
Save-and-exit, and Discard-and-exit options.

To compile a source module

1. Choose the Compile option to compile the module.

After you choose Compile, the screen prompts you to select among
the Object, Runable, and Exit options.

The option you choose depends on whether your module is a
complete program or whether it is one of several .4gl modules that
together make up a complete program.

2. If the module is a complete 4GL program that requires no other
modules, select Runable.

This creates a compiled p-code version of your program module
with the same filename but with extension .4gi.

3. If the module is one module of a multi-module 4GL program, select
Object.

This creates a compiled p-code version of your program module
with the same filename but with the extension .4go. See also the
procedures for combining program modules, which are described
later in this section.

If the compiler detects errors after either option, no compiled file is
created, and the screen prompts you to select Correct or Exit. Follow
the next two steps after an error.
8-8 Guide to the IBM Informix 4GL Interactive Debugger

Working in the Programmer’s Environment
4. Select Correct to resume the previous text editing session with the
same text editor and .4gl source file but with error messages in the
file.

5. Edit the file to correct the error and select Compile again.

If an error message appears, repeat the previous steps until the
module compiles without error.

After the module compiles successfully, the screen prompts you
again to select Compile, Save-and-exit, or Discard-and-exit.

6. Select the second option to save the compiled program. The
MODULE menu appears again on your screen.

7. If your program requires screen forms, you must select Exit to return
to the INFORMIX-4GL menu and then select Form to display the
FORM menu.

The Debugger does not display the source code of forms (files with
the extension .per), but it can display the screen output that the
compiled versions of these files produce.

8. If your program displays help messages, you must create a help file
and compile it with the mkmessage utility.

See the INFORMIX-4GL Reference for information about designing and creating
screen forms and about implementing help messages in 4GL programs.

Combining Program Modules

If the module that you compiled is the only module in your program, you are
now ready to use the Debugger, and you can skip the steps that are described
here. If your new or modified module is part of a multi-module 4GL program,
however, you must combine all of the modules into a single program before
you can use the Debugger.

To combine modules

1. If you are not at the INFORMIX-4GL menu, choose Exit until that
menu appears.

2. Choose the Program option to display the PROGRAM menu.

3. If you are creating a new multi-module 4GL program, rather than
modifying an existing one, choose the New option.

The screen prompts you to enter the name of your program.
The Debugging Environment 8-9

Working in the Programmer’s Environment
4. Enter the name that you want to assign to your program, without a
file extension.

The program name must begin with a letter and can include under-
scores (_) and numbers. After you enter a valid name, the PROGRAM
screen appears with your program name in the first field, as shown
in Figure 8-1.

Figure 8-1
NEW PROGRAM Screen

5. Press RETURN to select the 4GL option.

A message prompts you to enter the names of all the source modules
of your program.

6. Enter the name of a module, without the .4gl file extension.

Repeat this step for every module. If the module is not in the current
directory or in a directory specified by the DBSRC environment
variable, enter the pathname to the directory where the module
resides.

7. If your program includes a Globals module, choose the Globals
option and enter the corresponding information.

NEW PROGRAM: 4GL Globals Other Program_Runner Rename Exit
Edit the 4GL sources list.

-- Press CTRL-W for Help ----
Program []
Runner [fglgo] Runner Path []
Debugger[fgldb] Debugger Path []

4gl Source 4gl Source Path
[] []
[] []
[] []
[] []
[] []

Global Source Global Source Path
[] []
[] []

Other .4go Other .4go Path
[] []
[] []
8-10 Guide to the IBM Informix 4GL Interactive Debugger

Working in the Programmer’s Environment
8. If your program includes any .4go modules that you have already
compiled, choose the Other option to enter their filenames (and
optionally, their pathnames).

9. After you have correctly listed all of the modules of your 4GL
program on the NEW PROGRAM screen, choose the Exit option to
return to the PROGRAM menu.

10. Choose the Compile option of the PROGRAM menu.

This produces a file that combines all of your .4gl source files into an
executable program. Its filename is the program name that you
specified, with the extension .4gi. The screen lists the names of your
.4gl source modules and displays the PROGRAM menu with the Run
option highlighted.

Executing a Compiled Program

You could press RETURN to test for runtime errors by executing the compiled
4GL program. Because you have much greater control of program execution
if you first invoke the Debugger, however, the usual procedure at this point
is to begin a debugging session rather than to select the Run option.

Invoking the Debugger

The following procedure describes how to begin a debugging session.

To invoke the Debugger

1. If you are at the INFORMIX-4GL menu you must choose either the
Module or the Program option before you can access the Debugger.

2. At either the MODULE or PROGRAM menu, press D to choose the
Debug option.

The screen prompts you to specify a 4GL program as your appli-
cation for this debugging session. If any compiled files with the
extension .4gi are in your current directory, their names appear
below the prompt.
The Debugging Environment 8-11

Working at the Command Line
3. Select a program by using the arrow keys to highlight the name of a
file, and then press RETURN.

Alternatively, you can enter the name of a compiled 4GL program.
You do not need to specify the .4gi extension. (You must supply the
.4go extension to select a .4go file only if a file with the .4gi extension
has the same filename.)

Working at the Command Line
The same .4gl source files and compiled .4go and .4gi p-code files can also be
created at the operating system prompt. Figure 8-2 shows the process of
creating, compiling, and running or debugging a single-module program
from the command line. Here the rectangles represent specific operating
system commands, and the circles represent disk files. Arrows indicate
whether a file serves as input or output for a process.

Figure 8-2
Debugging a

Single-Module
Program

Debugger
fgldb

P-code
runner
fglgo

.4go
compiled

p-code file

.4gl
source

file

Text
editor

P-code
compiler

fglpc
8-12 Guide to the IBM Informix 4GL Interactive Debugger

Working at the Command Line
This diagram is simplified and ignores the similar processes by which forms
and other components of 4GL applications are compiled and executed:

■ The cycle begins in the upper-left corner with a text editor, such as vi,
which you use to produce a 4GL source module.

■ You can then compile the program module by using the fglpc p-code
compiler. (If error messages are produced by the compiler, you must
locate the errors in the .err file and edit the .4gl file to correct them.
Then recompile the corrected .4gl file.)

■ Next, you can invoke the Debugger at the system prompt by entering
the command:

fgldb f ilename

where filename specifies a compiled source file.

■ You might need to modify the source file to eliminate runtime errors
that the Debugger identifies. You can then recompile and retest the
4GL program. When it is ready for use by others, they can use the
fglgo program to execute the compiled program.

The correspondence between commands and Programmer’s Environment
menu options is summarized by the list that follows.

Command Description Menu Options

vi UNIX system editor New, Modify

fglpc 4GL P-Code Compiler Compile

fglgo 4GL P-Code Runner Run

fgldb 4GL Interactive Debugger Debug
The Debugging Environment 8-13

Working at the Command Line
Creating or Modifying a 4GL Source File

Use your system editor or another text-editing program to create a .4gl source
file, or to modify an existing file. Refer to the documentation for your editor
and to INFORMIX-4GL Concepts and Use for details.

Compiling a Source File

You cannot use the Debugger to examine a 4GL program until you have
compiled each source module into a .4go file. You can compile source
modules from the system prompt using the fglpc command as follows.

Unless you specify the -V option, this command creates a compiled version
of each .4gl source module. Each compiled module has the same filename as
the corresponding source file but with the extension .4go.

If you specify the -V option, the screen displays the version number of your
SQL and p-code compiler software. Any other command options are ignored.
After displaying this information, the program terminates without invoking
the p-code compiler.

If you specify a nondefault directory with the -p pathname option, the .4go
and .err files are stored in directory dir. Unless you specify the -p pathname
option, compiled modules are stored in the current directory.

Element Description

fglpc The required name of the command file.

-V Displays the version number of the software.

-a Causes your compiled program to check array bounds at runtime.

-p pathname Stores object (.4go) and error (.err) files in directory pathname.

source.4gl The name of your 4GL source module. You do not need to specify the
.4gl extension. You can specify any number of source files.

.4gl-p pathname

fglpc

-a

source

-V
8-14 Guide to the IBM Informix 4GL Interactive Debugger

Working at the Command Line
Because the -a option requires additional processing, you might want to use
this option only during development for debugging purposes.

If an error occurs during compilation, a message is displayed, and a file
source.err is created. You can look in source.err to find where in your code the
error occurred. The source.err file is created in the current directory or in the
directory that you specify with the -p pathname option.

You can specify any number of source files, in any order. You do not need to
specify their .4gl file extensions.

Examples

The following command compiles a 4GL source file, single.4gl, and creates a
file called single.4go in the current directory:

fglpc single.4gl

The next command line compiles two 4GL source files:

fglpc -p /u/ken fileone filetwo

This generates two compiled files, fileone.4go and filetwo.4go, and stores the
compiled files in subdirectory /u/ken. Any compiler error messages are
saved in files fileone.err or filetwo.err in the same directory.
The Debugging Environment 8-15

Working at the Command Line
Concatenating Multi-Module Programs

If a program has several modules, the compiled modules must all be
concatenated into a single file with a .4gi or .4go file extension. For example:

cat file1.4go file2.4go ... fileN.4go > new.4gi

combines the list of .4go files into a file called new.4gi. (This step is
represented in Figure 8-3.)

Figure 8-3
Debugging a

Multi-Module
Program

P-code
runner
fglgo

Text
editor

Concatenation
utility

Debugger
fgldb

.4gl
source

file

.4gi
p-code

executable
files

.4go
p-code
object
files

P-code
compiler

fglpc
8-16 Guide to the IBM Informix 4GL Interactive Debugger

Working at the Command Line
Throughout this manual, the .4gi extension is used to designate runnable
programs that have been compiled and concatenated. You might want to
follow this convention in naming files because only .4gi files are displayed
from within the Programmer’s Environment. This is also a convenient way
to distinguish complete program files from individual modules of a multi-
module program.

If your 4GL program calls C functions or INFORMIX-ESQL/C functions, you
must also follow the procedures that are described in Appendix B, “Calling
C Functions,” before you can use the Debugger.

Invoking the Debugger

After you have compiled your 4GL program, you can invoke the Debugger by
entering the fgldb command at the system prompt.

Unless you select the -V option, a fgldb command loads the Debugger and
specifies filename as the 4GL application program. An error message appears
unless the Debugger can access all of the files specified in the command line,
and any corresponding .4gl source files. If filename is outside your current
directory, you must prefix it with a pathname.

Element Description

fgldb The name of the Debugger command file.

-V Displays the version number of the software.

-I Specifies a nondefault search path for 4GL source files.

-p pathname An optional search path specification.

-f An optional symbols to specify a nondefault initialization file.

initfile The name of an optional .4db initialization file.

filename The name of a compiled 4GL program.

- f initfile

fgldb filename

-V

,

- I pathname
The Debugging Environment 8-17

Working at the Command Line
If you do not specify a file extension, the Debugger looks for a file called
filename.4gi. If it cannot locate this file, it searches for a file called
filename.4go.

Once you specify a valid program, you cannot select a different program as
your current application unless you exit from the Debugger.

If you specify the -V option, the screen displays the version number of your
SQL and Debugger software. After displaying this information, the program
terminates without beginning a debugging session, and the system prompt
returns.

The -I pathname specification is optional. Use it if any program modules are
not in your current directory search path. The next section of this chapter
describes other ways to specify the directories in which the Debugger
searches for 4GL source files.

Use a comma between pathnames if you specify several directories. Blank
characters are not allowed in a list of pathnames.

The -f initfile specification is also optional. The initialization file must have
the extension .4db, but you do not need to include this extension in the
command line.

See “Establishing Parameters from Files” on page 8-45 for a description of
how .4db files can be used to customize your debugging environment.

The filename of a fgldb command line cannot be a 4GL program that calls
C functions. Appendix B describes the special procedures for using the
Debugger to analyze 4GL programs that call C functions or ESQL/C functions.

Examples

Enter the following command to use the Debugger to examine the compiled
4GL program file called cust_order.4gi:

fgldb cust_order

The next command:

fgldb -f template customer.4go

specifies customer.4go as the compiled program and begins the debugging
session by reading the Debugger commands in a file called template.4db.
8-18 Guide to the IBM Informix 4GL Interactive Debugger

Specifying the Source Program Search Path
The following command:

fgldb -I /u/myfiles,/g/testfiles catalog.4go

specifies that the source file search path begins with the directories /u/myfiles
and /g/testfiles and that the program catalog.4go is the current program. If
you do not specify the extension .4go, the Debugger makes catalog.4gi the
current 4GL program if it finds a compiled program with that name in the
current directory.

The following command:

fgldb -I /u/myfiles /g/testfiles/catalog.4go

specifies that the Debugger will begin searching for source files in directory
/u/myfiles and that the program catalog.4go in directory /g/testfiles is the
current program.

The following command:

fgldb -V

displays the release versions of your SQL software and of your p-code
compiler and then returns control to the operating system. This option might
be helpful in some troubleshooting situations.

Specifying the Source Program Search Path
The Debugger supports several methods by which you can specify the names
of the directories that contain your 4GL source files. The following list shows
the order in which directories are searched. If two source files have the same
name, the Debugger uses the file whose directory was specified by a method
nearest the top of this list:

1. Your current directory. The Debugger always searches for files in the
directory from which you invoked the Debugger.

2. The directory associated with the 4GL program. If you include a
pathname in the specification of the 4GL application program, the
Debugger also searches that directory for source modules.
The Debugging Environment 8-19

Specifying Keyboard Aliases
3. The directories that you can specify after the -I symbols if you invoke
the Debugger from the system prompt.

4. The directories specified by the DBSRC environment variable. See
Appendix A, “Environment Variables,” for information on how this
is specified.

This is the directory search order at the beginning of a debugging session.
Directories can also be specified by the USE command. The USE command
allows you to specify a list of directories to be searched during a debugging
session before any of the directories listed previously. An option of the USE
command enables you to specify a search path that replaces your current
source file search path. See Chapter 9, “The Debugger Commands,” for the
syntax of the USE command.

The pathnames and search order of directories that can be specified by these
methods are only in effect during the current debugging session. Directories
that hold databases required by the 4GL application program must be
specified by the DBPATH environment variable. See Appendix A for a
description of the DBPATH and DBSRC environment variables.

Specifying Keyboard Aliases
The Debugger assigns default command strings to the first nine function keys
of many terminals unless you have redefined those keys in an initialization
file. (“Establishing Parameters from Files” on page 8-45 describes initial-
ization files.) The default command strings assigned to these keys were listed
in Chapter 1, “Introduction to the Debugger,” but are reproduced here:

alias f1 = help
alias f2 = step
alias f3 = step into
alias f4 = continue
alias f5 = run
alias f6 = list break trace
alias f7 = list
alias f8 = dump
alias f9 = exit
8-20 Guide to the IBM Informix 4GL Interactive Debugger

The Debugger Screens and Windows
You can use the ALIAS command to replace these command strings with
other strings, or to assign Debugger command strings to any alphanumeric
key or sequence of keys that starts with a letter. This is a convenient feature
because it allows you to assign command strings to any key or sequence of
keystrokes that you specify.

If you enter a Debugger command line that includes one or more aliases, the
Debugger screen echoes your keystrokes and then displays the expanded
form of your command, substituting for the aliases. Aliases can contain other
aliases. You cannot alias Debugger commands such as Interrupt, Redraw,
Screen, or Toggle, which are invoked by control characters rather than by
keywords.

If you program your function keys by some other method, you cannot use
their default aliases.

Any keyboard assignments made by the 4GL application program that you
are debugging override these aliases when the program requires input. The
standard meanings of the keys are restored after you exit from the Debugger.
Chapter 9 describes the syntax of the ALIAS command in detail.

The Debugger Screens and Windows
The Debugger allows you to monitor a debugging session through the
following screens and windows:

■ Debugger screen. This screen consists of a Source window and a
Command window.

The Command window accepts and displays the 50 most recent lines
of your Debugger commands, their output, and any error messages.
It occupies the lower part of your Debugger screen display.

The Source window displays the name, line numbers, and source
code of the current 4GL module. This appears in the upper part of
your Debugger screen display.

■ Application screen. This screen displays screen output from your
4GL program and overwrites the Debugger screen. You can use the
APPLICATION DEVICE command to direct this full-screen display to
a second video terminal.
The Debugging Environment 8-21

Descriptions of the Debugger Displays
Besides these displays of the Debugger screen and the Application screen, the
Debugger supports two additional displays:

■ Help screen. This full-screen display shows help menus and help
messages that provide information about the Debugger. You can
only access the Help screen from the Command window.

■ Operating system display. If you type an exclamation point (!)
followed by an operating system command, control returns tempo-
rarily to the operating system, and you see the display (if any) of the
command.

Descriptions of the Debugger Displays
The sections that follow describe each of the Debugger displays. Although
you can sometimes see several of them simultaneously, at a given moment
you can enter information at only one of them. You can select this active
display (also called your current window or screen) by using appropriate
commands or control keys. Figure 8-4 on page 8-25 summarizes how to
switch your current display.

Command Window

Occupying the lower portion of the Debugger screen, the Command window
becomes your current window when you successfully invoke the Debugger
and specify your current 4GL program. In the Command window, you can
perform the following tasks:

■ Enter Debugger commands.

■ Scroll and search the command buffer.

■ Save or redraw the Debugger screen.

■ Observe Debugger output and error messages.

You can switch from the Command window to any other display with the
following commands:

■ VIEW switches to the Source window.

■ CTRL-T switches to the Application screen.
8-22 Guide to the IBM Informix 4GL Interactive Debugger

Descriptions of the Debugger Displays
■ The HELP command switches to the Help screen.

■ The exclamation point (!), followed by a system command, transfers
control temporarily to the operating system.

From the Source window, pressing the Interrupt key (typically CTRL-C)
switches to the Command window. If the EXITSOURCE parameter is ON,
typing any alphabetic character switches to the Command window and
echoes the character after the $ prompt.

From the Application screen, you can return to the Command window by
pressing the Interrupt key. If you have toggled to display the Application
screen, you can return to the Command window by pressing CTRL-T or any
key except CTRL-S, CTRL-P, CTRL-Q, or CTRL-R.

From a Debugger Help screen, you can press RETURN until the Command
window reappears.

From the operating system display, you can return to the Command window
by pressing any key.

Source Window

If you are working in the Command window, the VIEW command makes the
Source window your current window. This window displays and highlights
the name, module, and source code of the current 4GL function. In the Source
window, you can perform the following tasks:

■ Scroll and search the source module.

■ Display the 4GL statement at which execution stopped.

■ Save or redraw the Debugger screen.

■ Execute an operating system command.

Besides switching to the operating system display with the exclamation
point, you can switch from the Source window to other displays:

■ The Interrupt key switches to the Command window.

■ CTRL-T displays the Application screen.
The Debugging Environment 8-23

Descriptions of the Debugger Displays
If you have used CTRL-T to switch to the Application screen from the Source
window, and EXITSOURCE is OFF, pressing any key (except the control keys
CTRL-S, CTRL-Q, CTRL-P, or CTRL-R or the Interrupt key) returns you to the
Source window. If EXITSOURCE is ON, any alphabetic key selects the
Command window.

Application Screen

This screen appears when the current 4GL application requires keyboard
input or produces screen output.

The Application screen appears if you press CTRL-T from the Debugger
screen, or if the 4GL program produces output when AUTOTOGGLE is ON.
When the AUTOTOGGLE parameter is OFF, the Application screen is not
displayed automatically when program output is produced, but it appears
when keyboard input is required. When the 4GL program requires input, you
can either supply the requested input or switch to the Command window by
pressing the Interrupt key.

If the 4GL program is not requesting input, pressing any key (except CTRL-S,
CTRL-Q, CTRL-P, CTRL-R, or the Interrupt key) restores your previous window.

The Application screen is empty when you press CTRL-T unless the 4GL
program has produced screen output. You must first issue a RUN or CALL
command from the Command window before the program or a function can
produce any output. The CLEANUP command clears the Application screen.

Help Screen

Enter HELP (or H) at the Command window to make the Help screen your
current window.

Unless you specify a Debugger command after the HELP keyword, the Help
screen initially displays a list of command names. If you select a topic from
this list, the Help screen then displays the first page of a message about the
topic. If you enter help all at the Command window, the Help screen
displays a synopsis of every Debugger command.

After you have read the first page of a message, type S to display the next
page, or else type R to return to the Command window.
8-24 Guide to the IBM Informix 4GL Interactive Debugger

Descriptions of the Debugger Displays
Operating System Display

To execute an operating system command, type an exclamation point (!) at
the Command or Source window, and enter the command or the name of an
executable command file. If this produces screen output, the Command and
Source windows scroll up to make room for your output. The command can
invoke an interactive program that requires keyboard input.

After the command terminates, the Debugger prompts you to press any key,
which returns you to the Command or Source window. If you again type an
exclamation point, you can enter another command line without returning to
the Debugger screen.

Figure 8-4 depicts the Debugger windows and screens and indicates some of
the keyboard commands to switch your current window from one to another.

Figure 8-4
A Map of the Debugger Windows and Screens

CTRL-T

Interrupt

Application

screen

Help

screen

Operating system

display

Source

window

Command

window
CTRL-T

View

Interrupt

R Help

!Command

Any Key

!Command

Any Key
The Debugging Environment 8-25

Setting Terminal Display Parameters
Setting Terminal Display Parameters
The Debugger supports several parameters that allow you to control the
Source and Command windows and the interaction of the Debugger screen
with the Application screen.

The functions of these parameters and the commands to change their values
are described in the sections that follow. When you invoke the Debugger,
they have the default values listed in the following table unless other values
are specified by a .4db initialization file (as described later in this chapter).

If you exit to the Programmer’s Environment after changing any of these
parameters and subsequently return to the Debugger to work with the same
4GL program, your modified values are in effect. If you exit to the operating
system or select a different 4GL program, however, default values replace
your modified values when you begin another debugging session.

Parameter Command Default

AUTOTOGGLE TURN ON/OFF ON

DISPLAYSTOPS TURN ON/OFF ON

EXITSOURCE TURN ON/OFF ON

PRINTDELAY TURN ON/OFF OFF

SOURCETRACE TURN ON/OFF OFF

TIMEDELAY SOURCE TIMEDELAY 1

TIMEDELAY COMMAND TIMEDELAY 0

SOURCE LINES GROW 9 *

COMMAND LINES GROW 10 *

APPLICATION DEVICE APPLICATION DEVICE (no second terminal)

* Default window size for a standard 24-line terminal
8-26 Guide to the IBM Informix 4GL Interactive Debugger

Parameters Controlled by the TURN Command
Parameters Controlled by the TURN Command
You can use the TURN command in the Command window to alter the values
of five of the terminal display parameters. The function of each is described
in the sections that follow.

AUTOTOGGLE

When the AUTOTOGGLE display parameter is ON, the Debugger displays the
Application screen whenever your program requests input from the user or
generates output. If AUTOTOGGLE is turned OFF, the Debugger switches to
the Application screen only when the 4GL program requires input. To view
the Application screen at any other time, you must press CTRL-T from the
Command or Source window to toggle the display.

If you are running a program that produces frequent output, it might be
easier to work in the Command or Source window when this parameter is
turned off. The default value for AUTOTOGGLE is ON.

DISPLAYSTOPS

When DISPLAYSTOPS is ON, the Debugger changes the display in the Source
window to show the 4GL statement that is currently executing and highlights
the next statement to be executed when execution stops. If DISPLAYSTOPS is
OFF, the contents of the Source window are not modified, and when
execution stops, the Debugger displays the next statement to be executed in
the Command window. You might invoke a TURN OFF DISPLAYSTOPS
command if you have lengthy comments or variable definitions in your
program that you want to remain in the Source window for your reference
during the session. The default for DISPLAYSTOPS is ON.

EXITSOURCE

When EXITSOURCE is ON and the cursor is in the Source window, pressing
any alphabetic key or the Interrupt key makes the Command window the
current window. The Debugger then echoes and executes any command that
you type at the Source window.
The Debugging Environment 8-27

Parameters Controlled by the TURN Command
If both AUTOTOGGLE and EXITSOURCE are ON, for example, you can type
RUN when the Source window is your current window. The result is that
control switches to the Command window, where RUN is entered. The Appli-
cation screen replaces the Command window as the current window if the
program prompts for keyboard input or displays output. When EXITSOURCE
is OFF, only the Interrupt key switches you from the Source window to the
Command window. The default value for EXITSOURCE is ON.

PRINTDELAY

When PRINTDELAY is ON, the screen is updated in multiple-line blocks when
a Debugger command (such as LIST) sends output to the Command window.
When PRINTDELAY is OFF, the Command window is updated a single line at
a time, and multiple-line output from Debugger commands scrolls up the
Command window. When you are tracing execution, OFF is usually better.
On some terminals, or if your system is slow, a TURN ON PRINTDELAY
command results in a more timely display. You might want to experiment
with both values to find your preferred setting. The default value for PRINT-
DELAY is OFF.

SOURCETRACE

If SOURCETRACE is ON, the Debugger highlights each line of code as it
executes, and modifies the contents of the Source window as necessary.
When SOURCETRACE is OFF, the Debugger does not highlight each line of
code as it executes. One effect of a TURN ON SOURCETRACE command is to
increase the time required for a debugging session. It can be very useful,
however, when you are first becoming familiar with a program or when you
are working with a relatively small program. Alternatively, it can be turned
on for sections of a program that require particular attention and turned off
otherwise. The default value for SOURCETRACE is OFF.

This concludes the list of display parameters that are controlled by the TURN
command.
8-28 Guide to the IBM Informix 4GL Interactive Debugger

Parameters Controlled by the TIMEDELAY Command
Parameters Controlled by the TIMEDELAY Command
Two terminal display parameters, TIMEDELAY SOURCE and TIMEDELAY
COMMAND, are controlled by the TIMEDELAY command. The TIMEDELAY
command resembles the 4GL SLEEP statement. The integer argument of a
TIMEDELAY command line specifies the number of seconds that elapse before
the display is updated. This determines how quickly the display changes in
the Source window or in the Command window.

TIMEDELAY SOURCE

The TIMEDELAY SOURCE parameter specifies the number of seconds that
elapse before the next 4GL statement is highlighted in the Source window
when the SOURCETRACE parameter is ON. The larger the value, the longer
the delay before the next statement is highlighted in the Source window. The
initial default value of TIMEDELAY SOURCE is 1.

If you would like to highlight each line of source code for a shorter period,
you could enter the following TIMEDELAY command at the Command
window prompt:

timedelay source 0

This is equivalent to the command:

timedelay 0

because SOURCE is the default window specification of the TIMEDELAY
command. This example selects a delay of zero seconds while each line of
source code is highlighted. This could reduce the time required for a
debugging session.

Because values of the DISPLAYSTOPS, SOURCETRACE, and TIMEDELAY
SOURCE parameters all affect the display of both the Application and the
Source windows, they do not work independently. The TIMEDELAY SOURCE
parameter has no effect unless SOURCETRACE is ON.
The Debugging Environment 8-29

Parameters Controlled by the GROW Command
TIMEDELAY COMMAND

The TIMEDELAY COMMAND parameter determines the speed at which each
new line of Debugger output is displayed in the Command window. This
controls how quickly commands such as LIST and READ can send their next
line of output to the Command window. The initial default value is zero,
meaning that no delays are inserted.

Sometimes, however, you might want a slower display. A READ command,
for example, can execute a list of Debugger commands that produce output
in the Command window. These might scroll above the top of the Command
window faster than you can read them or before you can press CTRL-S to stop
the display. In situations like this, resetting the TIMEDELAY COMMAND
parameter to a nondefault value can allow you to read the Command
window display more easily. For example, the command:

timedelay command 1

waits for one second before sending another line of output (or an error
message) to the command buffer. The integer argument of a TIMEDELAY
COMMAND command specifies the number of seconds to delay before
successive lines of output appear in the Command window.

Parameters Controlled by the GROW Command
The relative size of the Command and Source windows is specified by two
terminal display parameters, SOURCE LINES and COMMAND LINES, which
are both controlled by the GROW command. The syntax and options of GROW
resemble those of TIMEDELAY, except that the numeric argument of GROW
can sometimes have negative values.

If your terminal can display L lines, the sum of COMMAND LINES and
SOURCE LINES values is always (L-5). The minimum size of either window is
one line. The maximum value is 18 lines on a standard (24-line) terminal.
8-30 Guide to the IBM Informix 4GL Interactive Debugger

Parameters Controlled by the GROW Command
SOURCE LINES

The SOURCE LINES parameter specifies the number of lines of source code
that can be displayed in the Source window without scrolling. On a 24-line
screen, it has a default value of 9. This value can be changed by using the
GROW command. For example, the command:

grow source 3

adds 3 to the current value of SOURCE LINES, expanding the Source window
by three additional lines. The command:

grow 3

has the same effect because SOURCE is the default window specification of a
GROW command.

Similarly, the command:

grow -2

reduces the size of the Source window by two lines because the numerical
argument of the GROW command, here -2, is added to the current value of
SOURCE LINES.

COMMAND LINES

The number of lines visible in the Command window is specified by the
COMMAND LINES parameter. This has a default value of 10 on a standard
(24-line) terminal. The value can be changed by using the GROW command.
For example, the command:

grow command 4

increases the size of the Command window by four additional lines. The
command

grow -4

has the same effect because SOURCE is the default window specification, and
reducing SOURCE LINES by 4 increases COMMAND LINES by the same
amount.
The Debugging Environment 8-31

The APPLICATION DEVICE Command
The APPLICATION DEVICE Command
Besides the display parameters that have already been described in this
chapter, the Debugger allows you to specify an application device. This allows
you to redirect screen output of the current 4GL program to another video
terminal, rather than to the terminal from which you invoked the Debugger.
The default is to direct 4GL application output to the same terminal that
invoked the Debugger.

The APPLICATION DEVICE command is a Debugger feature that can be
helpful if you have access to two identical video display terminals on a
multiuser system, or two terminals that can support the same termcap or
terminfo entries. The APPLICATION DEVICE command dedicates the second
physical terminal to the Application screen. This allows you to monitor
continuously the output display from the application program that you are
analyzing, regardless of which Debugger display is your current window.

Even if you use this command to redirect output to the screen of a second
terminal, you cannot use the keyboard of the second terminal to enter input.
Any input to the application program must be entered at the keyboard of the
terminal from which you invoked the Debugger.

To specify a second terminal for the Application screen, you must enter a
command of the following form.

For example, the command:

application device /dev/ttyp14

designates as the application device the terminal whose device name is
/dev/ttyp14. Both must be logged in by the same account name. Both use the
termcap or terminfo entry for the terminal from which you invoked the
Debugger.

To restore the default value of this parameter (no separate application
device), you must use the EXIT command to terminate the Debugger and
return to the operating system.

APPLICATION DEVICE device
8-32 Guide to the IBM Informix 4GL Interactive Debugger

Establishing Breakpoints and Tracepoints
Establishing Breakpoints and Tracepoints
Among the most powerful features of the Debugger are commands to specify
breakpoints and tracepoints. They can control when the 4GL program stops
or what diagnostic information the Debugger displays as you run your
program. They help you to monitor changes in 4GL variables and analyze
program logic. You can also specify commands for the Debugger to execute
when a breakpoint or tracepoint is reached.

The BREAK Command
The BREAK command creates breakpoints. These can suspend program
execution at a 4GL statement or function when a variable changes or if logical
conditions are satisfied. The complete syntax of BREAK is described in
Chapter 9, “The Debugger Commands.”

The following examples illustrate different criteria that you can establish for
a breakpoint to take effect:

■ Break at a specific line. If you enter:
break 30

execution stops when the Debugger reaches line 30. If line 30 is part
of a multiple-line statement, execution stops at the first line of the
statement. If line 30 is not executable, it stops at the next executable
statement or at the last line of the function, whichever comes first. An
error message appears if the module contains no executable state-
ments, or fewer than 30 lines. If you enter:

break -6 30

execution stops the sixth time that it reaches line 30. If you enter:
break 30 if x > 5

execution stops when it reaches line 30 of the current module if the
value of variable x is greater than 5.

break fast.30 if x > 5 { print x }

Execution stops at line 30 of module fast.4gl if variable x is greater
than 5. After this breakpoint suspends execution, the Command
window shows the value of variable x.
The Debugging Environment 8-33

The BREAK Command
■ Break at a specific function. If you enter:
break funca

execution stops if the function called funca is entered. If you enter:
break 'alfa' funca if i = 7

execution stops if the function called funca is entered when the value
of variable i is equal to 7. Debugger commands such as DISABLE,
ENABLE, NOBREAK, and WRITE can reference this named breakpoint
as alfa.

(See Chapter 9 for more information on these commands.)

■ Break when a variable changes. If you enter:
break vara

execution stops if the value of the variable vara changes. If you enter:
break vara { print vara >> filea; dump all }

execution stops if the value of vara changes. Then the name and
value of vara are saved in a file called filea, and a DUMP ALL
command displays the values of the variables in the current function,
as well as the values of all global variables. If you enter:

break vara if status = 0

execution stops if the value of vara changes while the value of the
STATUS flag is zero.

■ Break if a logical condition is TRUE. If you enter:
break if status = 100

execution stops if the value of the status flag is 100. If you enter:
break if impact = 1 AND n > 9 { let n = 0; continue }

execution stops if the value of the variable impact is 1 and n is greater
than 9. After execution is suspended, the value of n is reset at zero.
The Debugger then executes a CONTINUE command, which immedi-
ately resumes program execution. If you enter:

break (dropship) if impact

execution stops if local variable impact that was defined in function
dropship is assigned a nonzero value.
8-34 Guide to the IBM Informix 4GL Interactive Debugger

The BREAK Command
Interactions Among Breakpoints Set on Variables

As these examples show, the name of a program variable can be specified in
a BREAK command. The breakpoint stops execution if the variable changes,
or if an expression that includes the variable becomes TRUE. If there is a
change in the value of any variable associated with an active breakpoint, the
Debugger checks all active breakpoints that reference variables.

This can result in interactions among breakpoints, if several BREAK
commands reference variables. Suppose, for example, that two of your
currently active breakpoints have been specified by the following
commands:

break if x
. . .

break if i = 100

The first suspends program execution if variable x is assigned a nonzero
value. The second stops the program when variable i becomes equal to 100.

In this example, the Debugger suspends program execution when any of the
following changes occur in the values of i or x:

■ x becomes TRUE (that is, unequal to zero)

■ i becomes equal to 100

■ x changes when i is equal to 100

■ i changes when x is TRUE.

When either of the first two events listed previously occurs, stopping is the
precise effect that you requested when you specified one of these break-
points. If you resume execution with a CONTINUE command, however, you
might not have intended the program to stop after either of the last two
events occurs.

To avoid this problem, you could enter a DISABLE command after the first
breakpoint takes effect. You can do this automatically by substituting a
command such as:

break "truex" if x { disable "truex" }

for the first BREAK command in this example. This creates a self-disabling
breakpoint that cannot stop the program more than once unless you reset it
with an ENABLE command.
The Debugging Environment 8-35

The BREAK Command
When you have many active breakpoints, it might help to specify an
identifying PRINT message in each BREAK command. In this way, you can
determine which breakpoint caused each break. For example, a named break-
point that identifies itself could be set on variable y by the following
command:

break "eg" if y { disable "eg"; print "eg" }

Resuming Execution After a Breakpoint

When execution is suspended by a breakpoint, you can use a PRINT, DUMP,
or LET command to evaluate or reassign program variables in any 4GL
functions that have not yet returned, or any global variables. After you have
observed the program and invoked whatever Debugger commands suit your
purpose, you have several options for resuming execution:

■ You can use a CONTINUE command to resume execution at the
breakpoint for an indefinite number of statements.

■ You can use a STEP command to resume execution at the breakpoint
for a specific number of 4GL statements. The NOBREAK option of
STEP ignores any breakpoints that are encountered while STEP
executes those statements.

■ You can use a CALL command to execute any function, including
main. (Before a CALL command, you might need to issue a CLEANUP
command to reinitialize the program.)

■ You can use a RUN command to reinitialize and restart the program
from the beginning.

Removing or Disabling a Breakpoint

A breakpoint can be deleted by a NOBREAK command, or deactivated by a
DISABLE command. An inactive breakpoint can be reactivated by an ENABLE
command.
8-36 Guide to the IBM Informix 4GL Interactive Debugger

The TRACE Command
The TRACE Command
The command establishes tracepoints. These cause the Debugger to display
information about the current 4GL program when a statement or function is
reached or when a variable changes. The complete syntax of TRACE is
described in Chapter 9. The following examples illustrate features of a 4GL
program that you can monitor with a tracepoint:

■ Trace a specific line. When you enter:
trace 40

if execution reaches line 40 of the current module, the Debugger
appends the statement in line 40 to the command buffer. If line 40 is
part of a multiple-line statement, it appends the entire statement. If
line 40 is not executable, it appends the next executable statement or
the last statement of the function, whichever comes first. An error
message appears if the module contains no executable statements or
fewer than 40 lines. When you enter

trace fast.40 { print x }

if the next statement after line 39 of the module called fast.4gl is
executed, the statement is added to the command buffer, and a PRINT
command evaluates variable x.

■ Trace a specific Variable. When you enter:
trace varb

a message appears in the command buffer if the value of the variable
called varb changes. The message displays the qualified name and
new value of the variable, and the function, line number, and module
that assigned the new value. When you enter:

trace (funcb) varb {print varb >> fileb; dump}

if local variable varb in function funcb changes, the message in the
previous example appears in the command buffer. Then a PRINT
command saves in file fileb the name and the new value of varb.
Then a DUMP command appends output to the command buffer,
evaluating the variables in the current function.
The Debugging Environment 8-37

The TRACE Command
■ Trace a specific function. If you enter:
trace funcb

a message appears in the command buffer whenever the function
funcb is entered, showing its name, the values of any arguments, and
the line number and function from which it was called. Another
message appears whenever funcb returns, showing any returned
values. When you enter:

trace funcb >> funcb.out

if function funcb is entered or returns, the messages in the previous
example are saved in a file called funcb.out, not in the command
buffer. If that file does not exist when the tracepoint is reached, the
Debugger creates it. When you enter:

trace funcb { print i >> i.out } >> funcbtr

if the function funcb is entered or returns, the Debugger saves the
same messages in a file called funcbtr in the current directory.
Whenever the funcb function is entered, a PRINT command saves the
name and current value of variable i in a file called i.out. (When you
trace a function, any embedded commands are executed when the
function is entered rather than when it returns.)

■ Trace all functions. If you enter:
trace functions

the Debugger adds a message to the command buffer whenever any
function is entered, showing the name of the function, any
arguments, and the line number and function of the statement that
called it. When any function returns, its name and returned values
appear in the command buffer. If you enter:

trace 'beta' functions >> funcs.out

whenever any function is entered or returns, the Debugger saves the
messages described in the previous example in a disk file called
funcs.out. Other Debugger commands such as DISABLE, ENABLE,
NOTRACE, and WRITE can refer to this named tracepoint as beta. (See
Chapter 9 for more information on these commands.)
8-38 Guide to the IBM Informix 4GL Interactive Debugger

Restrictions on BREAK and TRACE Commands
Unless your system or terminal is relatively slow, it is difficult to read trace-
point output in the Command window if your 4GL program prompts for
input because the Debugger automatically switches to the Application
screen. If you want more time to read tracepoint output when it appears in
the Command window, you can use a TIMEDELAY COMMAND command.
Alternatively, you can use the Interrupt key to switch to the Command
window.

A tracepoint can be deleted by a NOTRACE command or deactivated by a
DISABLE command. An inactive tracepoint can be reactivated by an ENABLE
command.

The Debugger does not impose any limit on the number of breakpoints and
tracepoints that you can specify, apart from the memory or mass storage
capacity of your system.

Restrictions on BREAK and TRACE Commands
The previous examples of BREAK and TRACE commands apply to 4GL
functions that contain executable statements and to variables and to line
numbers in 4GL functions. You can also establish a breakpoint or tracepoint
at the line number of a 4GL statement that calls a C function or an ESQL/C
function.

An error message results if a BREAK or TRACE command specifies a line
number or the name of a variable inside a C function or a 4GL library
function, or the name of a variable that exists only in a C-language module.
A TRACE command (but not a BREAK command) can specify the name of a
C function. Appendix B describes using the Debugger with 4GL programs
that call C or ESQL/C functions.

The optional commands that you can specify in braces ({ }) in a TRACE
command cannot include program execution commands such as CALL,
CONTINUE, RUN, or STEP because the program does not stop executing when
you reach a tracepoint.

The TRACE command can specify any other commands except those that
require a control character (Interrupt, Screen, Redraw, and Toggle). BREAK
commands can specify any Debugger commands except these nonkeyword
commands. Use a semicolon to separate consecutive commands.
The Debugging Environment 8-39

Displaying and Copying Parameters
A breakpoint or tracepoint results in an error message, however, if any
variable or function specified in the commands list of a BREAK or TRACE
command violates the rules in “Active Functions and Variables” on
page 9-20. Other error messages appear if the commands list contains other
syntax errors.

If you assign a name to a breakpoint or tracepoint, the name must be unique
and must begin with a letter. Regardless of whether you assign a name, the
Debugger assigns a unique reference number to every breakpoint and trace-
point. This number is displayed in the Command window after a valid
BREAK or TRACE command.

Displaying and Copying Parameters
Earlier sections of this chapter described commands to establish or modify
the source file search path, keyboard aliases, terminal display parameters,
breakpoints, and tracepoints. The Debugger command language supports
other facilities related to the user interface of the Debugger. This section
describes commands that you can use with debugging environment param-
eters to accomplish the following tasks:

■ List environment values on the screen.

■ Save environment values in a disk file.

■ Replace environment values with values from a disk file.

Displaying Values with the LIST Command
To examine the current values of the terminal display parameters, enter the
following command at the command prompt:

list display
8-40 Guide to the IBM Informix 4GL Interactive Debugger

Displaying Values with ALIAS
The following output from a LIST DISPLAY command describes the default
values of terminal display parameters:

TERMINAL DISPLAY STATE
autotoggle on
displaystops on
sourcetrace off
exitsource on
printdelay off
timedelay source 1
timedelay command 0
source lines 9
command lines 10

If you had specified a separate application device, the name of that parameter
and its terminal device name would also have appeared in the LIST DISPLAY
output.

To see your current breakpoints, enter:

list break

The Command window displays the reference numbers, optional names, and
complete specifications of all your current breakpoints, if any exist. Active
and inactive breakpoints are listed separately, in the order of their reference
numbers. The LIST TRACE command displays the corresponding information
about all your current tracepoints in the same format as LIST BREAK.

Specifying both options (LIST BREAK TRACE) displays all your current break-
points and tracepoints. The LIST command with no option displays all your
current display parameters, breakpoints, and tracepoints.

Displaying Values with ALIAS
The ALIAS command can also display information about your current
debugging environment. If you enter the command:

alias *

at the Command window, the screen displays all of the current aliases that
you have assigned to function keys or to command strings. The initial default
aliases are listed in the next section, “Establishing Parameters from Files.”
The Debugging Environment 8-41

Displaying Values with USE
Suppose that you established three additional aliases by means of the
commands:

alias y1 = disable all
alias y2 = grow -1
alias y3 = { y1;y2 }

Then the command:

alias *

would list all your aliases in alphabetical order, beginning with the default
aliases, and then the following aliases:

y1 = disable all
y2 = grow -1
y3 = { y1;y2 }

Displaying Values with USE
If you enter:

use

at the Command window with no argument, the screen displays the names
of all the directories in the current source file search path. For example, if
your current search path only includes your current directory, a USE
command without any options produces the following display:

Current search path: .

Saving Values with the WRITE Command
To save in a disk file the commands to establish all the current values of your
terminal display parameters, aliases, source file search path, breakpoints, and
tracepoints, enter:

write >> filename

at the Command window, where filename must be a valid filename. The
Debugger creates an ASCII file called filename.4db or appends new
commands to the existing file if there is already a file of that name in your
current directory.
8-42 Guide to the IBM Informix 4GL Interactive Debugger

Saving Values with the WRITE Command
If you do not supply a filename, the information is saved under the default
filename. This is the filename of the application program that you are
currently analyzing, but with the extension .4db. The commands in this file
are executed automatically whenever you use the Debugger with the same
4GL program. If you are not sure whether you want the current parameters
reestablished automatically, you should supply a nondefault filename.

If your current debugging environment parameters all have default values,
then an output file produced by a WRITE command with no options contains
the following commands:

alias f1 = help
alias f2 = step
alias f3 = step into
alias f4 = continue
alias f5 = run
alias f6 = list break trace
alias f7 = list
alias f8 = dump
alias f9 = exit
use .
turn on autotoggle
turn off sourcetrace
turn on displaystops
turn on exitsource
turn off printdelay
timedelay source 1
timedelay command 0
source lines 9
command lines 10
list display

If you use the ALIAS, APPLICATION DEVICE, GROW, TIMEDELAY, TURN, or
USE commands to establish nondefault values, corresponding commands
appear in the output file of the WRITE command.

Commands to establish any current breakpoints or tracepoints are also saved
in the output file of a WRITE command when you specify no option. You can
also use options of the WRITE command to prevent some of your debugging
environment parameters from being saved. For example, WRITE ALIASES
BREAK only saves commands to establish the current aliases and breakpoints.
Read the syntax of WRITE at the end of Chapter 9 for more information.
The Debugging Environment 8-43

Establishing Values with the READ Command
Establishing Values with the READ Command
You can replace the current values of the terminal display parameters with
other values by using a READ command to execute multiple Debugger
commands from an ASCII file. To use this feature, enter:

read filename

at the command prompt, where filename is the name of an ASCII file that
contains a list of Debugger commands. The input file must have the .4db
extension, but this extension does not have to be included in READ
commands.

The file that was created by a WRITE command in the previous section is an
example of a file that could be used in a READ command to establish a set of
terminal display parameters, aliases, breakpoints, and other debugging
environment parameters. You can edit the file to include any other Debugger
commands that are invoked by keywords, such as CALL or FUNCTIONS. The
file cannot include commands that require control characters, such as
Interrupt, Screen, or Toggle.

The commands in the file are executed in sequence when you invoke the
READ command, just as if you were typing them at the command line. Their
output appears in the Command window, but the commands themselves are
not echoed there. Additional information about the READ command appears
in the next section and in the summary of the syntax of READ in Chapter 9.
8-44 Guide to the IBM Informix 4GL Interactive Debugger

Establishing Parameters from Files
Establishing Parameters from Files
As noted in the last section, the READ command can be used to establish
aliases, breakpoints, source file search paths, terminal display parameters,
and tracepoints from a .4db file. This section presents additional information
about these files, which can also be used to initialize your debugging
environment without invoking READ.

Establishing System Default Parameters
Default aliases of the first nine function keys are specified in the system initial-
ization file. This ASCII file contains the following ALIAS commands, which are
executed automatically at the beginning of every debugging session:

alias f1 = run
alias f2 = step
alias f3 = step into
alias f4 = continue
alias f5 = help
alias f6 = list break trace
alias f7 = list
alias f8 = dump
alias f9 = exit

This file affects every user whose keyboard and termcap or terminfo file
support function keys designated “f1, f2, ..., f9.” The system initialization file
is named init.4db, and it resides in the $INFORMIXDIR/etc directory. The
install script created this file when you installed the Debugger.

Establishing User Default Parameters
The default values in the system initialization file are ignored by the
Debugger if a user initialization file exists in your home directory. Commands
in this file replace or modify any similar commands in the system
initialization file.

Like the system initialization file, the name of the user initialization file must
be init.4db. If you want to use this optional file, you must copy it to your
home directory or create it there. Unlike the system initialization file, the user
initialization file is not supplied by Informix, but you can create it with a text
editor or by using the WRITE command of the Debugger.
The Debugging Environment 8-45

Establishing Program Default Parameters
Any Debugger commands that appear in this file are executed automatically
at the beginning of every debugging session of every user who logs in under
your account name.

Establishing Program Default Parameters
When you invoke the Debugger, the commands specified in the system or
user init.4db files can be supplemented by additional commands in a program
initialization file.

This file must have the same name as the compiled 4GL program that you are
debugging, but with the extension .4db. If such a file exists in the same
directory as the current 4GL program, its commands are executed automati-
cally when you invoke the Debugger.

A program initialization file establishes the initial default debugging
environment for a specific program. You can create this file with either a text
editor or a WRITE command. The default filename in a WRITE command is the
name of the program initialization file for the current program.

You can override the program initialization file default if you specify another
initialization file when you invoke the Debugger from the command line.

Using Nondefault .4db Files
Besides the system, user, and program initialization files, whose commands
can be automatically executed at the beginning of a debugging session, you
can create other .4db files that include Debugger commands. As noted earlier
in this chapter, entering a READ command and the filename at the Command
window executes all of the commands in a .4db file.

You can also include the name of a .4db file in the command line that invokes
the Debugger. You can do so by using the -f option of the fgldb command, as
in the next example:

fgldb -f f ilename program

Here filename is a .4db initialization file, and program is the name of the .4gi
or .4go application. Unless filename is in your current directory, you must
prefix it with a pathname.
8-46 Guide to the IBM Informix 4GL Interactive Debugger

Using Nondefault .4db Files
It is easy to create .4db files with the WRITE command. Debugging
environment features that WRITE can save include those that follow:

■ Current aliases of your keyboard

■ Current display parameters of your terminal

■ Current source file search path

■ Current breakpoints

■ Current tracepoints

This allows you to take a snapshot of your current debugging environment
and to reestablish the same parameters by using a single READ command in
subsequent debugging sessions.

Because the .4db file is an ASCII file, you can also use a text editor to modify
it according to the needs of a specific debugging task. These files save time at
the start of a debugging session and enable you to develop a library of
debugging environment templates for use in recurring tasks.
The Debugging Environment 8-47

Using Nondefault .4db Files
Figure 8-5 expands the schematic summary from Figure 8-3 to include files
that can affect the debugging environment.

Figure 8-5
Input and Output Files in the Debugging Process

P-code
runner
fglgo

Text
editor

Concatenation
utility

.4gl
source

file

.4gi
p-code

executable
files

.4go
p-code
object
files

P-code
compiler

fglpc

.4dbl
command

file

Debugger
fgldb

Other
Debugger

output
files
8-48 Guide to the IBM Informix 4GL Interactive Debugger

Exiting from the Debugging Environment
Exiting from the Debugging Environment
The EXIT command terminates the debugging session. You can only invoke it
from the Command window.

When this is not your current window, press the Interrupt key (typically
CTRL-C), if you are at the Application screen or at the Source window. If a
Debugger HELP command is displaying messages, press RETURN until the
Debugger screen appears. If you are using the Escape feature to execute an
operating system command, terminate it, and press RETURN to display the
Debugger screen. Now you can enter:

exit

This returns you to the prompt or menu from which you began the
debugging session. If you invoked the Debugger in a command line, EXIT
returns you to the system prompt. Unless you used a WRITE command before
you ended the session, any changes that you made in the initial default
values of your debugging environment no longer exist.

If you invoked the Debugger from the Programmer’s Environment, you are
prompted to press RETURN after an EXIT command. After you do this, the
screen displays the menu from which you selected the Debug option. Here
you can modify and recompile your 4GL source modules or perform other
tasks.

If you exit to the Programmer’s Environment inadvertently, simply press D at
the current menu to choose the Debug option, and select the same 4GL
program as your current application. This restores the same debugging
environment that was current when you invoked the EXIT command.

If you select another program to debug, however, or if you return to the
system prompt, the initial default values of the debugging environment
parameters are in effect.
The Debugging Environment 8-49

Chapter Summary
Chapter Summary
This chapter elaborated on the following points:

■ You can invoke the Debugger from the Programmer’s Environment
or from the system prompt.

■ You can specify parameters that control the following features of
your debugging environment:

❑ The 4GL program that the Debugger analyzes

❑ The directory search path for 4GL source files

❑ Keyboard aliases and function keys

❑ The interactions of the Debugger screens and windows

❑ Breakpoints to control program execution

❑ Tracepoints to monitor program execution

■ You can monitor a debugging session from the following screens and
windows:

❑ A Debugger screen that includes a Command window for
Debugger commands and output, as well as a Source window to
display source code of 4GL applications

❑ An Application screen for output from the 4GL application

Additional displays show help messages about Debugger
commands and output from operating system commands.

■ You can display the current debugging environment parameters by
using the ALIAS, LIST, and USE commands.

■ You can save the commands to establish the current debugging
environment with a WRITE command.

■ You can create files that automatically establish debugging
environment parameters, or you can use a READ command to
replace current parameters with values from a file.

■ You can restore the same debugging environment from which you
exited to the Programmer’s Environment if you resume debugging
the same program before you return to the system prompt.
8-50 Guide to the IBM Informix 4GL Interactive Debugger

9
Chapter
The Debugger Commands
In This Chapter . 9-5

Functionality of the Debugger Commands 9-6
Cursor Movement Keys and Search Commands 9-6

Search Commands and Wildcards 9-6
Default Search Pattern 9-7
Cursor Movement at the Debugger Screen 9-8
Features of the Command Window Cursor 9-8
Features of the Source Window Cursor 9-9
Cursor Movement in Help and Application Displays 9-9

Control Keys for Screen Management 9-10
Screen Management Commands 9-11
Commands to Display Information 9-12
Commands to Control Breakpoints and Tracepoints 9-13
Commands to Specify Values 9-14
Commands for Program Execution 9-15

Scope of Reference 9-16
The Scope of Reference Rules 9-17
Example of Qualifying Variables 9-19

Active Functions and Variables 9-20
The Status of Program Execution. 9-20
Active Functions 9-21
Active Variables 9-22
Examples of Inactive Functions and Variables 9-22

Short Forms of Keywords 9-24

9-2 Guid
Conventions for Command Syntax Notation 9-29
Capital Letters 9-29
Italics . 9-30
Brackets . 9-30
Pipe Symbol . 9-31
Braces . 9-31
Underscore . 9-31
Ellipsis Points 9-32

Syntax of the Debugger Commands 9-32
Specific Restrictions on Debugger Commands 9-33
Multiple Command and Continuation Symbols. 9-34
ALIAS . 9-35
APPLICATION DEVICE 9-38
BREAK . 9-40
CALL . 9-45
CLEANUP . 9-47
CONTINUE . 9-49
DATABASE . 9-51
DISABLE . 9-53
DUMP . 9-55
ENABLE . 9-57
ESCAPE . 9-59
EXIT . 9-60
FUNCTIONS 9-61
GROW . 9-63
HELP . 9-65
INTERRUPT 9-67
LET . 9-69
LIST . 9-72
NOBREAK . 9-74
NOTRACE . 9-76
PRINT . 9-78
READ . 9-80
REDRAW . 9-82
RUN . 9-83
SCREEN . 9-84
e to the IBM Informix 4GL Interactive Debugger

SEARCH . 9-86
STEP . 9-88
TIMEDELAY . 9-91
TOGGLE . 9-93
TRACE . 9-95
TURN . 9-100
USE . 9-103
VARIABLE . 9-105
VIEW . 9-107
WHERE . 9-109
WRITE . 9-111
The Debugger Commands 9-3

9-4 Guid
e to the IBM Informix 4GL Interactive Debugger

In This Chapter
This chapter describes the command set of the Debugger. This chapter
includes the following topics:

■ A synopsis of Debugger control characters and commands, grouped
by function

■ Rules for specifying the scope of reference of INFORMIX-4GL
variables

■ Program execution status, and the distinction between active and
inactive variables and functions

■ The shortest unique forms of Debugger commands

■ Typographic conventions for specifying command syntax

■ Syntax of the Debugger commands, arranged in alphabetic order,
with explanatory notes and examples of usage

The last section is intended as a reference guide to the individual commands,
many of which have been illustrated in the earlier chapters.
The Debugger Commands 9-5

Functionality of the Debugger Commands
Functionality of the Debugger Commands
The Debugger command set is small enough that if you work with the
Debugger regularly, you will soon discover the logical relationships among
its commands. If you are not yet familiar with the Debugger, however, it
might be helpful to read this section, which groups the commands according
to their function and briefly indicates what each command does. The
Debugger commands and control characters are summarized under the
following functional categories:

■ Cursor movement keys and search commands

■ Control keys for screen management

■ Screen management commands

■ Commands to display information

■ Commands to control breakpoints and tracepoints

■ Commands to specify values

■ Commands for program execution

Cursor Movement Keys and Search Commands
Search commands and cursor movement keys can move the cursor within the
Source and Command windows. They can also scroll the source code or the
command buffer to lines that are not currently displayed in the window.

Search Commands and Wildcards

The slash (/) and question mark (?) keys allow you to search for a pattern
within the Source or Command window (whichever is your current
window). If the pattern is found, the cursor moves to the first line containing
that pattern. You can use a question mark to search backward from the
current cursor position or a slash to search forward.

A pattern specification is a string of no more than 50 blanks and characters, or
up to 80 if a quotation mark (") is the first character. For example, the
following command searches backward in the current window for the
lowercase string input:

?input
9-6 Guide to the IBM Informix 4GL Interactive Debugger

Cursor Movement Keys and Search Commands
A pattern specification can include wildcards and ranges of letters. The
following symbols are for partial matches.

For example, the search command:

/?[N-P]*T

searches forward, looking for a mixed-case or uppercase string such as INPUT,
cOnstrucT, or TOOLKIT that matches the pattern.

If the Debugger finds the next instance of the pattern in a line that is not on
the screen, the current window scrolls its display to include that line, and the
cursor moves to it.

Unlike the cursor movement keys, which cannot scroll above the first line or
below the last line of the command buffer or the source code module, a search
command can wrap around the Source or Command window displays. This
enables you to find a pattern in any line by searching in either direction.

Default Search Pattern

The first search command of a debugging session must include a pattern
specification after the slash or question mark. In subsequent searches, the
most recent pattern specification becomes the default. If you have searched
the Source window since the last VIEW command, you can press RETURN to
repeat the most recent search command from the current cursor position. The
Debugger then searches in the same direction for the same pattern.

Symbol Description

* Matches any string of zero or more nonblank characters.

? Matches any single nonblank character

[d-p] Matches any character between d and p inclusive in the ASCII
collating sequence, for d < p
The Debugger Commands 9-7

Cursor Movement Keys and Search Commands
Cursor Movement at the Debugger Screen

If the Command or Source window is your current window, the following
keys move your cursor to a different line.

If you prefix with a number any of the arrow keys or control characters in this
list, the Debugger repeats the command as many times as you specify. For
example, typing 3 and then pressing CTRL-U moves the cursor up one-and-a-
half windows or to the first line, whichever comes sooner.

When you use the Escape feature or a search command at the Source window,
or specify a command line at the Command window, pressing BACKSPACE (or
CTRL-H or LEFT ARROW) moves the cursor one space to the left. This also
deletes any character that you typed there but had not yet entered.

Features of the Command Window Cursor

At the Command window, you can type a nonnegative number and press
RETURN if your cursor is above the last $ prompt. This moves your cursor
down by the specified number of lines or to the current $ prompt, whichever
comes first. For example, entering 20 moves the cursor to the 20th line below
its current position (or to the current $ prompt if that is 20 or fewer lines
below the cursor position).

If the cursor is at an earlier line of the command buffer, typing any alphabetic
character moves the cursor to the $ prompt and echoes that character.

Key Effect

CTRL-K (Or UP ARROW) moves up one line

CTRL-J (Or DOWN ARROW or RETURN) moves down one line

CTRL-B Moves up one full window, less one line

CTRL-F Moves down one full window, less one line

CTRL-U Moves up one-half window

CTRL-D Moves down one-half window
9-8 Guide to the IBM Informix 4GL Interactive Debugger

Cursor Movement Keys and Search Commands
Features of the Source Window Cursor

The Source window recognizes three cursor movement commands that have
no effect (or a different effect) at the Command window.

For example, entering 20 at the Source window moves the cursor to line
number 20 of the current module, displaying part of the 4GL source file that
contains that line.

Cursor Movement in Help and Application Displays

Search commands cannot search for patterns within help messages or in 4GL
program output on the Application screen. You can use cursor movement
keys, however, to move your cursor or to highlight options of Help or Appli-
cation screen menus.

When your screen prompts you to select a topic from the help facility, you can
use the arrow keys or BACKSPACE to move the cursor and highlight help
options. You can also use these keys or the SPACEBAR to toggle between the
Screen and Resume options above specific help messages. (Pressing RETURN

selects the currently highlighted option.)

The same keys can also be used at the Application screen when your 4GL
program requires keyboard input. This is only possible when the last 4GL
statement is a PROMPT, INPUT, INPUT ARRAY, CONSTRUCT, or MENU
statement. You cannot move the cursor within the Application screen if 4GL
output is being displayed by a Toggle command.

Command Effect

nline Moves to line number nline, where nline is an integer

$ Moves to the last line of the current module

RETURN Moves to the next instance of the most recent search pattern since the
last VIEW command
The Debugger Commands 9-9

Control Keys for Screen Management
Control Keys for Screen Management
You can use the following control characters to manipulate the displays of
the Debugger windows and screens or to select the current window.

After the Toggle key switches your display to the Application screen, the
Debugger interprets any subsequent keystroke (except these control keys) as
beginning a command at your previous current window.

Key Effect

CTRL-C (Or DEL or whatever is your Interrupt key) switches the current window
from the Application screen or Source window to the Command
window. If a 4GL program is running, its execution is suspended.

CTRL-P Copies the current display of the Application screen or Debugger screen
to a disk file. This is called the Screen key.

CTRL-Q Enables the keyboard and screen for terminal I/O after you press
CTRL-S. This is called the X-ON key.

CTRL-R Redraws the screen display. This is called the Redraw key.

CTRL-S Disables terminal I/O, usually to prevent information from scrolling off
the screen before you can read it. This is called the X-OFF key.

CTRL-T Switches from the Debugger screen to the Application screen. To restore
the Debugger screen, press this Toggle key again.
9-10 Guide to the IBM Informix 4GL Interactive Debugger

Screen Management Commands
Screen Management Commands
Except for the ! command, by which you can enter an operating system
command from the Source or Command window, the remaining Debugger
commands can only be invoked from the Command window. The following
commands affect the terminal display.

The terminal display parameters are described in Chapter 8, “The Debugging
Environment,” and in the syntax descriptions of their respective commands.

Command Purpose

! command Executes an operating system command from the
Source or Command window, displaying any output.
This is the Escape feature.

APPLICATION DEVICE Redirects screen output of the current 4GL program or
function to another terminal.

GROW Specifies the relative sizes of the Command and Source
windows.

HELP Temporarily replaces the Debugger screen with
Debugger Help facility output.

TIMEDELAY Specifies the speed at which successive 4GL statements
in the Source window are highlighted when the
SOURCETRACE parameter is ON. It can indepen-
dently specify the speed at which the Command
window displays lines of Debugger output.

TURN Specifies whether terminal display parameters
AUTOTOGGLE, DISPLAYSTOPS, EXITSOURCE,
PRINTDELAY, and SOURCETRACE are ON or OFF.

VIEW Specifies the 4GL function or module that the Source
window displays and makes the Source window the
current window.
The Debugger Commands 9-11

Commands to Display Information
Commands to Display Information
Other commands enable you to display information about the current
debugging session in the Command window or to redirect output from
Debugger commands to a disk file.

The previous sections described the HELP command (to display command
syntax) and the Screen key (to save in a file the current Application screen or
Debugger screen).

The ALIAS and USE commands are described in “Commands to Specify
Values” on page 9-14 . These commands can respectively display your
current keyboard aliases and your source file search path.

Command Purpose

DUMP Displays values of program variables on the screen or saves them
in a file

FUNCTIONS Displays the names of programmer-defined 4GL functions in the
current program

LIST Displays the current terminal display parameters, breakpoints,
and tracepoints

PRINT Displays on the screen the value of an expression or copies it to
a file

VARIABLE Displays the declaration of a variable, record, or array on the
screen or copies it to a file

WHERE Displays on the screen or copies to a file the names of the
functions that have been called (but have not returned) before the
current 4GL statement executed

WRITE Saves in a disk file the Debugger commands necessary to
establish the current values of the aliases, display parameters,
breakpoints, tracepoints, and source file search path
9-12 Guide to the IBM Informix 4GL Interactive Debugger

Commands to Control Breakpoints and Tracepoints
Commands to Control Breakpoints and Tracepoints
Some Debugger commands enable you to examine the logic of a 4GL program
by specifying breakpoints and tracepoints and the conditions under which
these points are active. If a statement is marked by a breakpoint, execution
stops when the statement is reached a specified number of times. If a
statement is marked by a tracepoint, information is displayed when the
statement is executed. You can also deactivate or delete breakpoints or
tracepoints.

These breakpoint and tracepoint commands are among the most important
features of the Debugger when you are attempting to identify logical flaws in
a program. They are also helpful when you are analyzing a 4GL program that
was written by someone else.

Command Purpose

BREAK Establishes a breakpoint and optionally specifies the conditions
under which the breakpoint suspends program execution

DISABLE Deactivates a breakpoint or tracepoint without removing it or
deactivates all such points in a function or program

ENABLE Reactivates a breakpoint or tracepoint that had been disabled or
reactivates all such points in a function or program

NOBREAK Deletes an existing breakpoint or all the breakpoints in a function
or program

NOTRACE Deletes an existing tracepoint, or all the tracepoints in a function
or program

TRACE Specifies a tracepoint to indicate when a 4GL statement or
function executes or when a variable changes during
program execution
The Debugger Commands 9-13

Commands to Specify Values
Commands to Specify Values
Some of the Debugger commands can enhance the efficiency of a debugging
session by assigning values to function keys or 4GL program variables, or
performing certain housekeeping tasks without exiting from the Debugger.

You do not need to issue a CLEANUP command before RUN. Do not invoke
LET immediately before a RUN command (described in the next group of
commands) because RUN automatically reinitializes all program variables
with zero or null values and closes all forms and windows in the 4GL
program.

Command Purpose

ALIAS Assigns names or function keys to command strings so that
frequently used commands can be entered in a few keystrokes

CLEANUP Reinitializes all variables, forms, and windows so that you can
repeatedly invoke CALL commands to restart the same 4GL function

DATABASE Specifies the current database and closes any previously open
database

LET Assigns a value to a variable so that you can change the current
values of variables in a 4GL program that you are debugging

READ Executes multiple Debugger commands from a file so that you can
reestablish the environment of an earlier debugging session that you
saved by a WRITE command

USE Specifies a new source file search path so that you can access 4GL files
that are not found in any directory of your current search path
9-14 Guide to the IBM Informix 4GL Interactive Debugger

Commands for Program Execution
Commands for Program Execution
The last group of Debugger commands enables you to control the execution
of 4GL statements within the debugging environment or to exit from the
Debugger.

The earlier sections on screen management described the Interrupt key
(often CTRL-C or DEL) and the Escape feature that the exclamation point (!)
invokes. The first suspends execution of a running 4GL application. The
Escape feature can execute an operating system command line.

This concludes the descriptions of functionally similar groups of commands.
Several brief sections that follow describe topics that affect Debugger
commands, including the scope of reference of variables, active versus
inactive variables and functions, and abbreviations for Debugger keywords.
The final section of this chapter provides detailed information and examples
of each Debugger command.

Command Purpose

CALL Executes a 4GL function, or executes a C or INFORMIX-ESQL/C
function linked to the program

CONTINUE Resumes execution of a suspended program or sends an Interrupt
signal or a Quit signal to a currently executing 4GL program

EXIT Terminates execution of the Debugger, returning you to the
Programmer’s Environment or to the operating system

RUN Initializes and executes the 4GL program within the debugging
environment

STEP Executes one or more individual 4GL statements
The Debugger Commands 9-15

Scope of Reference
Scope of Reference
Some Debugger commands can use qualifiers to identify variables outside the
current function or to distinguish between similarly named variables in a 4GL
program, module, or function. A global variable retains its value throughout
a program. Other variables can be restricted in their scope to a single module
or function.

You can qualify the name of a program variable with prefixes to indicate its
scope of reference. A period (.) separates a qualifier from the name of the
variable or from another qualifier. Use the following syntax to qualify a
variable.

Variable

variable

FUNCTION .

MAIN .

module .

function .

MODULE .

GLOBAL .

[]

,

index3array

record .

1

Element Description

array The identifier of a 4GL array of records in which variable is a member
or of an array whose element you specify in a Debugger command.

function The identifier of the function in which variable is declared.

index A literal integer specifying an index within a dimension of array.

module The filename of the source-code module in which variable is declared.

record The identifier of the 4GL record of which variable is a member or of a
record whose members include a record that has variable as a member.

variable The unqualified identifier of a 4GL program variable.
9-16 Guide to the IBM Informix 4GL Interactive Debugger

The Scope of Reference Rules
When using qualifiers, take the following considerations into account:

■ If GLOBAL is the first qualifier, the variable is among your globals,
and the next identifier must be the variable name or the name of a
record or array that includes the variable. For example, global.x
specifies a global variable x.

■ If MODULE is the first qualifier, the next must be the name of the
module where the variable is defined. For example, module.code.x
specifies a module variable that is declared in a module called code.

■ If FUNCTION is the first qualifier, the next must be MAIN or the name
of the function where the variable is defined. For example,
function.main.x specifies a local variable that is declared in the main
program block.

Here the meaning of the unqualified name x depends on the context (that is,
on your current 4GL function).

The Scope of Reference Rules
This section outlines how variable names in Debugger commands are
identified with specific 4GL program variables. You specify a variable name
at the Command window. (Here variable symbolizes the identifier of any 4GL
variable.) The Debugger then searches for a corresponding 4GL variable by
sequentially applying the following rules:

1. Is the specification GLOBAL.variable?

2. Is the specification MODULE.module-name.variable?

3. Is the specification FUNCTION.function-name.variable?

4. Is there a matching name among the local variables that are defined
in the current function or program block?

5. Is there a matching name among the module variables that are
defined in the current module?

6. Is there a matching name among the global variables that are declared
in a GLOBALS statement?

Throughout this manual, the terms current function and current module refer
to the function or module in the Source window or (if the DISPLAYSTOPS
parameter is OFF) the currently executing function or module. The VIEW
command can specify the current function.
The Debugger Commands 9-17

The Scope of Reference Rules
As these rules imply, the Debugger does not search for a variable outside the
current module unless the variable is a global or module variable or unless
you specify the GLOBAL, MODULE, or FUNCTION qualifier.

These rules for qualifying variables are features of the Debugger that are not
supported by 4GL. You can prefix variable names with the GLOBAL,
MODULE, or FUNCTION qualifier in Debugger commands but not in 4GL
statements. Error messages appear if you attempt to compile .4gl files that
contain any of these qualifiers. For example, suppose that in a PRINT
command you specified a qualified variable:

print cust.ord.name

Before the Debugger can execute the command, it must first identify the
variable cust.ord.name. Although its multiple qualifiers indicate that the
variable name is a member of a record within a record, the Debugger applies
the same rules that it would apply to the name of a variable that had no
qualifiers.

Because the first qualifier is neither GLOBAL, MODULE, nor FUNCTION, the
search for a variable called cust.ord.name would proceed in the following
sequence:

1. Look for a record cust containing a member record ord with a
member name in the current function.

2. Look for a record cust containing a member record ord with a
member name in the current module.

3. Look for a record cust containing a member record ord with a
member name among the global variables.

The search stops when a variable is found. If no variable is found that
matches your specification, an error message appears, and the $ prompt
returns.
9-18 Guide to the IBM Informix 4GL Interactive Debugger

Example of Qualifying Variables
Example of Qualifying Variables
The next example illustrates how qualifiers can distinguish among program
variables that have the same name but different scopes of reference.

4GL does not allow a module variable and a global variable that are both
defined in the same module to have the same name. In the example that
follows, the global variable marked { 1 } and the module variable marked { 2 }
cannot have the same name.

Suppose that you are debugging the following program, whose variables
(defined in lines marked by numbers in braces) all have similar names:

1 GLOBALS
2 DEFINE j INTEGER {1}
3 END GLOBALS
4
5 DEFINE i INTEGER {2}
6
7 MAIN
8 DEFINE i INTEGER {3}
9 CALL b()

10 END MAIN
11
12 FUNCTION a()
13 DEFINE i INTEGER {4}
14 DEFINE j INTEGER {5}
15 DEFINE b RECORD
16 i INTEGER {6}
17 END RECORD
18 END FUNCTION
19
20 FUNCTION b()
21 DEFINE i INTEGER {7}
22 CALL a()
23 END FUNCTION

Assume that this module is called mod.4gl and that a breakpoint has stopped
execution in function a. Then the Debugger commands listed at the left
reference the following variables.

Command Variable Description

print i {4} Variable i in current function a()

print b.i {6} Member i of record b in function a()

print FUNCTION.b.i {7} Variable i in function b()

(1 of 2)
The Debugger Commands 9-19

Active Functions and Variables
Here the scope of reference of i and j depends on your current 4GL statement,
function, and module. If another function were the current function in this
example, the first two commands would not refer to the variables marked {4}
and {6} but to different variables. The next section, “Active Functions and
Variables,” describes another way in which some Debugger commands are
context sensitive.

Active Functions and Variables
This section identifies the commands that require active functions or active
variables in the current 4GL application. Whether any functions or variables
are active depends upon the current state of program execution.

The Status of Program Execution
When the Debugger can accept your commands at the Command window,
execution of the 4GL program is either suspended or terminated abnormally,
or else the program is not running. The following circumstances determine
which of these states is your current state of execution:

■ Suspended. Program execution can be suspended by any of these:

❑ An active breakpoint

❑ The Interrupt key

❑ A STEP command that has executed its 4GL statements

print FUNCTION.main.i {3} Variable i in main program block

print MODULE.mod.i {2} Variable i in current module

print GLOBAL.j {1} Global variable j

print j {5} Variable j in current function a()

Command Variable Description

(2 of 2)
9-20 Guide to the IBM Informix 4GL Interactive Debugger

Active Functions
■ Terminated abnormally. Execution can be terminated abnormally
by any of these:

❑ A fatal error

❑ A CONTINUE INTERRUPT command

❑ A CONTINUE QUIT command

❑ A 4GL EXIT PROGRAM statement

■ Not running. The 4GL program is not running if any of the following
conditions describes your current session:

❑ No RUN or CALL command has begun execution.

❑ CLEANUP followed the most recent RUN or CALL command.

❑ Execution terminated normally.

If a 4GL EXIT PROGRAM statement is encountered, the Debugger treats
program execution as abnormally terminated. But CONTINUE INTERRUPT or
CONTINUE QUIT commands do not result in abnormal termination unless
your 4GL source code fails to handle these signals.

Program execution begins with a valid RUN or CALL command and resumes
after a STEP or CONTINUE command. Unless execution is currently
suspended, the Command window displays an error message after any
CONTINUE or STEP command.

Active Functions
An active function is a 4GL function that has been called but has not yet
returned. There are no active functions unless execution of the 4GL program
has begun but is suspended or else has terminated abnormally. When the 4GL
program is not running, there is no active function.

The WHERE command displays the names of all currently active functions.
Error messages appear after WHERE, DUMP, and LET commands when no
function is active.

The Debugger always treats the MAIN section of a 4GL program as a function.
The Debugger Commands 9-21

Active Variables
Active Variables
An active variable is any global variable or any 4GL program variable in an
active function. There are no active variables unless CALL or RUN has begun
execution. The Debugger displays an error message if a CALL, LET, or PRINT
command references a variable that is not active.

Even if the 4GL program is not running, you can reference the name of any
global variable as an argument of a function in a CALL command. You must
substitute appropriate constants, however, for the names of any inactive
variables in CALL, PRINT, and LET commands.

Examples of Inactive Functions and Variables
Suppose that your current program is the same mod.4gl program that
appeared earlier in this chapter to illustrate the scope of reference of
variables:

1 GLOBALS
2 DEFINE j INTEGER {1}
3 END GLOBALS
4
5 DEFINE i INTEGER {2}
6
7 MAIN
8 DEFINE i INTEGER {3}

> 9 CALL b()
10 END MAIN
11
12 FUNCTION a()
13 DEFINE i INTEGER {4}
14 DEFINE j INTEGER {5}
15 DEFINE b RECORD
16 i INTEGER {6}
17 END RECORD

> 18 END FUNCTION
19
20 FUNCTION b()
21 DEFINE i INTEGER {7}

> 22 CALL a()
23 END FUNCTION

Suppose that you have not yet issued a RUN or CALL command in this
debugging session. If you enter a WHERE command, the Command window
displays this message:

-16387: Program is not currently being executed.
9-22 Guide to the IBM Informix 4GL Interactive Debugger

Examples of Inactive Functions and Variables
If you enter a CONTINUE, DUMP, or STEP command, similar error messages
appear because program execution has not begun.

If no breakpoints exist in this program, these commands produce the same
effect after a RUN or CALL command because execution terminates normally,
leaving no function active. After normal termination, for example, a DUMP
command produces the following error message:

-16362: No active function.

When the 4GL program is not running, CONTINUE and STEP commands only
produce error messages, and LET and PRINT commands cannot include the
names of any program variables. No local variable or module variable can be
referenced in a CALL command if no function is active.

For purposes of illustration, suppose that you set active breakpoints at lines
9, 18, and 22 with BREAK commands. If you begin execution with a RUN
command, the program stops at the breakpoint in line 9. Now a WHERE
command displays the only active function:

main() at line 9 in mod.4gl

Entering DUMP ALL displays the names and values of all the active variables,
which are in the lines marked {1}, {2}, and {3}.

You can resume execution by entering CONTINUE, STEP, or CALL b(). The
breakpoint at line 22 suspends execution before function a is called. This time
a WHERE command lists two active functions:

b() at line 22 in mod.4gl
main() at line 9 in mod.4gl

Entering DUMP ALL shows that the variables defined in the lines marked {1},
{2}, {3}, and {7} are active.

Entering the CONTINUE, STEP, or CALL a() command resumes execution, but
the breakpoint in line 18 stops the program before any function returns. Now
WHERE and DUMP commands would show that all the functions and
variables are active.

As this example shows, your choice of breakpoints might be influenced by
the fact that some command arguments are restricted to active functions or
to active variables.
The Debugger Commands 9-23

Short Forms of Keywords
In summary, error messages can appear after CALL, CONTINUE, DUMP, LET,
PRINT, STEP, or WHERE commands when no function is active, or when a
command references an inactive variable.

Other Debugger commands, including BREAK, TRACE, FUNCTIONS, and
VARIABLE, make no distinction between active and inactive functions or
variables. If your breakpoints or tracepoints specify additional commands to
execute, however, any variables that they reference must be active when the
breakpoint or the tracepoint is reached. For example, if you enter the
command:

break (fend) x { print y; print function.fz.z }

then y must be an active variable, and fz must be an active function when the
value of x changes in fend.

Understanding the distinction between active and inactive functions and
variables can save you time by avoiding errors. The Debugger error messages
are described in the “Error Messages” section near the end of this manual.

Short Forms of Keywords
The Debugger can recognize a command keyword (and most options) if you
truncate the complete keyword from the right. The abbreviated form must be
unambiguous.

The following table contains the four Debugger commands that derive their
shortest unique forms from default options that are implied when you do not
enter an alternative option.

Command and Default Shortest Unique Form

APPLICATION DEVICE ap

GROW SOURCE g

TIMEDELAY SOURCE ti

TURN ON tu
9-24 Guide to the IBM Informix 4GL Interactive Debugger

Short Forms of Keywords
Command options cannot be abbreviated, however, if the name of a program,
function, or variable could appear in the same position as the option. For
example, the f in the command:

tr f

cannot be a valid abbreviation for the FUNCTIONS option of the TRACE
command because it could also be interpreted as the name of a variable or
function.

The complete form (uppercase) and the shortest unique form (lowercase) of
each command keyword and its options appear alphabetically in the list on
the pages that follow. Most commands cannot be executed unless you
include additional arguments.

Six commands are invoked by nonalphabetic characters rather than by
keywords. You can use the names ESCAPE, INTERRUPT, REDRAW, SCREEN,
SEARCH, and TOGGLE, if prefixed by an underscore (_), as HELP command
options. For example, to display information about the search command, you
can enter an abbreviated or complete form of:

help _search

The following table lists the Debugger command keywords.

Command Option Shortest Form

ALIAS al

APPLICATION
DEVICE

ap
ap

BREAK
IF

b
b if

CALL ca

CLEANUP
ALL

cl
cl a

CONTINUE
INTERRUPT
QUIT

co
co i
co q

DATABASE da

(1 of 5)
The Debugger Commands 9-25

Short Forms of Keywords
DISABLE
ALL

di
di all

DUMP
ALL
GLOBALS

du
du a
du g

ENABLE
ALL

en
en all

EXIT ex

FUNCTIONS f

GROW
COMMAND
SOURCE

g
c
g

Command Option Shortest Form

(2 of 5)
9-26 Guide to the IBM Informix 4GL Interactive Debugger

Short Forms of Keywords
HELP
ALIAS
ALL
APPLICATION DEVICE
BREAK
CALL
CLEANUP
CONTINUE
DATABASE
DISABLE
DUMP
ENABLE
_ESCAPE
EXIT
FUNCTIONS
GROW
HELP
_INTERRUPT
LET
LIST
NOBREAK
NOTRACE
PRINT
READ
_REDRAW
RUN
_SCREEN
_SEARCH
STEP
TIMEDELAY
_TOGGLE
TRACE
TURN
USE
VARIABLE
VIEW
WHERE
WRITE

h
h al
h all
h ap
h b
h ca
h cl
h co
h da
h di
h du
h en
h _e
h ex
h f
h g
h h
h _i
h le
h li
h nob
h not
h p
h re
h _r
h ru
h _sc
h _se
h s
h ti
h _t
h tr
h tu
h u
h va
h vi
h wr

LET le

Command Option Shortest Form

(3 of 5)
The Debugger Commands 9-27

Short Forms of Keywords
LIST
BREAK
DISPLAY
TRACE

li
li b
li d
li t

NOBREAK
ALL

nob
nob all

NOTRACE
ALL

not
not all

PRINT p

READ re

RUN ru

STEP
INTO
NOBREAK

s
s i
s n

TIMEDELAY
SOURCE
COMMAND

ti
ti
ti c

TRACE
FUNCTIONS

tr
tr functions

TURN ON
AUTOTOGGLE
DISPLAYSTOPS
EXITSOURCE
PRINTDELAY
SOURCETRACE

tu
tu a
tu d
tu e
tu p
tu s

TURN OFF
AUTOTOGGLE
DISPLAYSTOPS
EXITSOURCE
PRINTDELAY
SOURCETRACE

tu of
tu of a
tu of d
tu of e
tu of p
tu of s

USE u

Command Option Shortest Form

(4 of 5)
9-28 Guide to the IBM Informix 4GL Interactive Debugger

Conventions for Command Syntax Notation
Conventions for Command Syntax Notation
The typographic conventions identified in this section are used to define the
syntax of the Debugger commands. The examples that illustrate these
conventions are from actual Debugger commands. For simplicity and clarity,
however, many of these examples present only part of the actual command
syntax. See “Syntax of the Debugger Commands” on page 9-32 for the
complete syntax of all the commands.

Capital Letters
Strings in uppercase letters are required keywords or options that you enter
as shown. You can substitute equivalent shortened forms or lowercase. For
example:

HELP TIMEDELAY

means to enter the command help timedelay.

VARIABLE
ALL
GLOBALS

va
va all
va globals

VIEW vi

WHERE wh

WRITE
ALIAS
BREAK
DISPLAY
TRACE

wr
wr a
wr b
wr d
wr t

Command Option Shortest Form

(5 of 5)
The Debugger Commands 9-29

Italics
Italics
Strings in lowercase italic letters are terms for which you must substitute a
specific identifier or value. For example:

DATABASE database-name

means to enter the name of some specific database after the keyword
database. The explanation and notes that follow the syntax describe the class
of terms.

Brackets
Brackets enclose terms that are not required. Do not include such brackets in
a command line (unless you are specifying an element of an array). For
example:

APPLICATION [DEVICE]

means that you must enter application, but you also have the option of
entering application device. Each set of brackets represents a different
condition. If several terms in separate brackets follow a required keyword,
you can use all, any, or none of them. For example:

LIST [BREAK] [TRACE] [DISPLAY]

means that you can enter list alone, list break, or list followed by any
combination of the three options.

Brackets nested within brackets indicate dependencies among options. You
can only use the option in the inner brackets if you select the option in the
outer brackets. For example:

BREAK [[module.]lineno]

means that you cannot specify a module. prefix unless you also specify a value
for lineno.
9-30 Guide to the IBM Informix 4GL Interactive Debugger

Pipe Symbol
Pipe Symbol
If a vertical bar, or pipe symbol, separates terms within the same set of
brackets, you can choose no more than one of those options. Do not include
any vertical bars in a command line. For example:

CONTINUE [INTERRUPT | QUIT]

means that you can enter continue alone, or else continue followed by
interrupt or by quit but not by both.

Braces
Braces around a list of options means that you must choose one of the
options. Do not include such braces (or the brackets or the vertical bars that
separate the listed options) in a command line. For example:

TURN [ON | OFF] {AUTOTOGGLE | DISPLAYSTOPS |
EXITSOURCE | PRINTDELAY | SOURCETRACE} ...

means that you must enter at least one of the options from the list in braces
that begins with AUTOTOGGLE and ends with SOURCETRACE. (The three
dots at the end mean that you can include additional options from this list.)

There is an exceptional use of braces. You must include braces around any
command strings that you include in an ALIAS, BREAK, or TRACE command.
This is indicated by the notation { commands } or { cmd_str... } in their syntax.

Underscore
In lists of options within brackets, the underscore marks the default option.
In the previous example, the underscore means that ON is the default, so if
you invoke the TURN command without specifying OFF or ON, the Debugger
selects ON as your option. (The vertical separator indicates that you cannot
select both ON and OFF in the same TURN command.)
The Debugger Commands 9-31

Ellipsis Points
Ellipsis Points
Ellipsis points within brackets mean that you have the option to repeat a term
like the previous term. Do not include such dots in a command line. For
example:

CALL function ([arg [, arg...]])

means that if you include an optional argument arg of a function, you can also
include additional arguments, separated by commas.

In examples of usage, ellipsis points alone on a line mean that an indefinite
number of other commands can occur between commands above and below
the dotted line.

All other special symbols, such as " (!) . * - > = ? / ’ , should be interpreted
literally, rather than as conventional symbols. You should enter these
symbols in your command line exactly as they appear in the syntax descrip-
tions of the next section.

Except for the literal braces around command strings in the syntax of ALIAS,
BREAK, and TRACE, these are the same typographic conventions that are
used in the 4GL documentation to represent the syntax of 4GL statements.

Syntax of the Debugger Commands
The rest of this chapter describes the syntax of the commands that the
Debugger recognizes at the $ prompt of the Command window, with explan-
atory notes and selected examples of usage.

Commands are listed in alphabetical order, according to the keyword that
invokes each command. Six exceptions (nonkeyword commands) are as
follows.

Name Invoked By Syntax Heading

Escape feature ! ESCAPE

Interrupt CTRL-C INTERRUPT

Redraw CTRL-R REDRAW

(1 of 2)
9-32 Guide to the IBM Informix 4GL Interactive Debugger

Specific Restrictions on Debugger Commands
A .4db file cannot include any of these nonkeyword commands. These are
also the only commands that you can invoke at both the Source window and
the Command window. The Interrupt, Redraw, Screen, and Toggle
commands are the only commands that you can execute at the Application
screen. You can enable or disable terminal I/O at any screen or window with
the X-ON (CTRL-Q) or X-OFF (CTRL-S) keys.

Specific Restrictions on Debugger Commands
The Debugger imposes the following limits on the maximum length or
complexity of command lines:

■ Up to 256 characters in a command line

■ Up to 80 characters in a quoted string

■ Up to 70 characters in a pathname

■ Up to 50 characters in a nonquoted search pattern

■ Up to 10 nested READ commands

■ Up to 5 nested ALIAS commands

Screen CTRL-P SCREEN

Toggle CTRL-T TOGGLE

Search / or ? SEARCH

Name Invoked By Syntax Heading

(2 of 2)
The Debugger Commands 9-33

Multiple Command and Continuation Symbols
Multiple Command and Continuation Symbols
Two special symbols can be used in Debugger command lines.

For example, you could type at the Command window:

print x; print y; print z

When you press RETURN, 4GL program variables x, y, and z are evaluated in
succession.

You can use both a semicolon and a backslash in the same line. For example,
you could type at the Command window:

list d; call item_total(); turn off autotoggle \
displaystops exitsource sourcetrace; view

When you press RETURN, the LIST, CALL, TURN, and VIEW commands are
executed in succession.

Semicolons and backslashes can be in the specifications of ALIAS, BREAK, and
TRACE commands. For example:

break * (dfunc) "bi" -6 if latex[i] { print \
"This is my big break."; print latex[i]; where }

The backslash at the end of the first line enables you to enter a BREAK
command that is too long to fit in a single line.

Key Effect

\ Backslash is the continuation symbol for commands that require more
characters than fit in one line. This cannot divide keywords or strings but
can appear where a blank would occur.

; Semicolon (like RETURN) is a command separator. You can use these to enter
several commands in the same line.
9-34 Guide to the IBM Informix 4GL Interactive Debugger

ALIAS
ALIAS
Use ALIAS to assign a name or function key to a command string.

On some terminals you can use a function key name, such as f1 for F1, as an
alias. Function key names must be defined in the file that is specified by the
TERMCAP environment variable or in the terminfo directory specified by the
TERMINFO environment variable.

The command string that you assign to an alias can be a command or the first
part of a command, or it can group several commands enclosed by a single
pair of braces ({ }). Use a semicolon (;) to separate commands, or put each
command on a new line.

Element Description

alias The name of an alias that was declared in a previous ALIAS command.
(The number of alias terms is not restricted, but name cannot be defined
by other aliases that are nested more than five layers deep.)

command A string that contains all (or the first part) of a Debugger command.
Search, Escape, and control-key commands are not valid here.

name The name of a function key (f1, f2, ...) or an alphanumeric string that is
defined here as an alias for the commands that follow the = symbol.
The name cannot be the complete name of another Debugger command.

commandALIAS name = 1

alias

command

alias

{ }

;

*

Debugger Commands 9-35

ALIAS
Entering the alias or pressing the function key sends the command string to
the Debugger. The Command window echoes the alias and then displays the
expanded command, substituting command strings for the alias before
executing the command. If any of the expanded command strings themselves
contain aliases, the Debugger repeats the process of expanding aliases before
executing the expanded command.

The asterisk (*) option displays all your current aliases.

Warning: If you use the terminal Setup keys to program your function keys, the
Debugger might not recognize your function keys.

An alias persists until another ALIAS command reassigns the same name or
function key or until an EXIT command ends the debugging session. If you
exit to the Programmer’s Environment and then resume debugging the same
4GL program without returning to the operating system, your aliases are
restored. Otherwise, they are replaced by the initial default aliases.

Examples
If you have not established any aliases, you can enter:

alias *

to display the default aliases that are defined by the system file init.4db for
the first nine function keys:

alias f1 = help
alias f2 = step
alias f3 = step into
alias f4 = continue
alias f5 = run
alias f6 = list break trace
alias f7 = list
alias f8 = dump
alias f9 = exit

To establish x as an alias for EXIT, enter:

alias x = exit

The next example assigns two commands to function key F9:

alias f9 = { print add_flag; view }

This is equivalent to the following command:

alias f9 = { print add_flag view }
9-36 Guide to the IBM Informix 4GL Interactive Debugger

ALIAS
You can invoke both commands by pressing the F9 key or by entering f9.

The command:

alias y1 = { f8; f3 main; f6 }

enters whatever commands the F3, F6, and F8 function keys currently alias,
with main the argument of the second command. When you enter y1, the
Command window echoes the command string that you specified within the
braces and then displays the expanded string by substituting it for the aliases.
If the expanded commands are valid, they are then executed in the order in
which they were specified in the ALIAS command.

Related Commands
WRITE
Debugger Commands 9-37

APPLICATION DEVICE
APPLICATION DEVICE
Use APPLICATION DEVICE to redirect screen output from the 4GL application
to a second video terminal.

This command enables you to monitor the Application screen continuously,
rather than only when your screen is not displaying the Debugger screen or
the Help screen.

This command can be useful if you are working on a multiuser system and
have access to two terminals that can support identical termcap or terminfo
entries. The terminal specified in this command uses the termcap or terminfo
entry of the terminal that invoked the Debugger.

When the application program requires input, only the keyboard of the
terminal that invoked the Debugger can enter input. Because the second
terminal is only used for output, its keyboard is not enabled until you invoke
the EXIT command from the terminal that is running the Debugger.

Both terminals must be logged in under the same account name.

Do not choose the terminal that is running the Debugger as your application
device.

Important: If you invoke the APPLICATION DEVICE command, you must specify
another terminal. Otherwise you will have difficulty reading screen output, and your
keyboard might lock up.

The Toggle key and the AUTOTOGGLE option of the TURN command have no
effect after an APPLICATION DEVICE command. The Interrupt key switches
keyboard input to the Command window if the 4GL program is requesting
input.

Element Description

device The name of a terminal device to display the Application screen. The
device specification must include the complete terminal pathname of
the device.

APPLICATION deviceDEVICE
9-38 Guide to the IBM Informix 4GL Interactive Debugger

APPLICATION DEVICE
You can display the terminal pathname of any logged-in terminal by using its
keyboard to enter the command tty.

Example
The following command selects a terminal designated as /dev/tty05 to be the
device to display screen output from the 4GL application program being
debugged:

app dev /dev/tty05

Related Commands
EXIT, INTERRUPT, LIST, WRITE
Debugger Commands 9-39

BREAK
BREAK
Use BREAK to set a breakpoint to suspend program execution.

A breakpoint stops execution immediately prior to executing the 4GL
statement specified by the BREAK command.

module .

BREAK

*

function()

"name "

'name '

- count Variable
p. 9-16

{ }command

;

line

function

conditionIF

Element Description

command A keyword-based Debugger command to execute when the breakpoint is
reached. Search, Escape, and control-key commands are not valid here.

condition A Boolean expression; this breakpoint suspends program execution when
condition evaluates as TRUE (= any value except zero, FALSE, or NULL).

count A negative integer. Execution is not suspended until this breakpoint is
reached count times.

function The identifier of a function. Between parentheses, this overrides the
current function as the scope of any variable on which the breakpoint is
set. Without parentheses, this breakpoint is set when function is called.

line The line number in the current module (if no module is specified) at
which this breakpoint suspends execution.

module The filename of the source module at which this breakpoint suspends
execution when program execution reaches the specified line.

name The identifier that you declare for this breakpoint. The name specification
must be enclosed between a pair of single (') or double (") quotation
marks.
9-40 Guide to the IBM Informix 4GL Interactive Debugger

BREAK
If you specify (function), the function that you name overrides the current
function in the Source window in determining the scope of reference of any
variable in a variable or IF condition specification.

The name option allows you to assign an optional name to a breakpoint. The
name must start with a letter, and it must appear in the command line within
single or double quotes.

If you specify a count, a minus symbol (-) must prefix it. After program
execution reaches an enabled breakpoint count times, execution stops
whenever that breakpoint is reached. That is, the Debugger does not wait
another count times before stopping again but stops every time thereafter.
The default value of count is 1.

After a breakpoint stops execution, you can use CONTINUE or STEP to resume
execution without resetting the count.

If you invoke a RUN command after a breakpoint stops execution, the
Debugger resets count at your starting value and restarts execution.

If a (function) name is specified and module is omitted, then the line refers to
the line number in the module that contains the function. If both the (function)
and module names are omitted, then line refers to the module displayed in the
Source window.

If the line is not an executable statement, the Debugger places the breakpoint
at the start of the next executable 4GL statement, or at the last statement in the
function (whichever is first). Variable definition statements, blank lines, and
comments are not executable statements. If the line is not the first line of a 4GL
statement, the breakpoint stops execution at the first line of the statement.

If the module contains no executable statements, an error message appears.

A condition cannot contain function calls.

If you specify both a count and an IF condition, count is reduced only if the
condition is TRUE.

When you specify function, execution stops whenever the function is entered.

If you specify both count and function, the breakpoint is reached count times
before execution stops at the function entry point.
Debugger Commands 9-41

BREAK
You can specify the line of a 4GL statement that calls a C function or 4GL
library function, but you cannot specify a function that is not a programmer-
defined 4GL function.

You cannot abbreviate the keyword IF.

The IF condition can include the CURRENT and EXTEND() functions, as well
as DATETIME and INTERVAL literals (including those produced by field-
typing numbers using UNITS).

You can qualify variable names. (See “Scope of Reference” on page 9-16 for
further information.)

There is no restriction on the number of breakpoints that you can set at any
time.

If many breakpoints are simultaneously active, you might want to include
distinctive PRINT messages as command options, to identify which breakpoint
stops execution.

The scope of reference of any variables in the commands list is determined by
their qualifiers and by the function that is current when the breakpoint takes
effect.

The Debugger disregards whatever function was current when you issued a
BREAK command, and ignores the (function) option, in identifying the scope
of any variables in commands.

If several BREAK IF commands reference variables, the Debugger suspends
execution if any of the variables changes when one of the breakpoint condi-
tions is TRUE. You might need to specify DISABLE commands in the commands
list to avoid unplanned breaks in this situation.

The Debugger assigns to each breakpoint a unique reference number. When
you establish a new breakpoint, the Command window displays its reference
number and other specifications. These can include the name, line number,
function, module, IF conditions, commands to execute, and scope, depending
on the arguments of your BREAK command.

Setting a breakpoint with the BREAK command also enables the breakpoint
unless you include the asterisk (*). You can use the asterisk option to create
a breakpoint without enabling it. The breakpoint is specified but disabled, as
if you had set it and then used a DISABLE command to deactivate it.
9-42 Guide to the IBM Informix 4GL Interactive Debugger

BREAK
Examples
Enter the following command to set an unnamed breakpoint at the tenth line
of the current module:

break 10

The Command window displays its reference number, the word break, and its
function, line number, module, and scope of reference.

The following command sets a breakpoint at line 100 in module main:

break main.100

If you enter the command:

break x

the Debugger first searches for a function named x. If x is a function in the
current program, this breakpoint suspends program execution after a
statement that calls x.

If no function named x is found, the Debugger searches for a variable called
x. If variable x is found, the Command window displays the reference
number of the new breakpoint, the word break, and the name of the variable.
The next line displays its scope of reference. Program execution stops
whenever the value of x changes.

If both a function and a variable have the name x, you must prefix the
variable with appropriate qualifiers in a BREAK command. If neither a
function nor a variable called x is found, the Command window displays the
error message:

-16351: Variable [x] could not be located.

The command:

break x[i]

immediately evaluates array member x[i] and returns an error if i does not
have a value. The command:

break if x[i]

treats i as a variable, and evaluates x[i] whenever the value of i changes
during program execution.
Debugger Commands 9-43

BREAK
The command:

break global.flag

stops execution whenever the value of the global variable flag changes. In the
next example:

break if global.flag

program execution stops when global.flag becomes TRUE (nonzero), not
whenever global.flag changes.

The command:

break "x" -2 20 if global.flag = 3 { print "Flag=3" }

sets a breakpoint named x at line 20 in the module currently displayed in the
Source window. The breakpoint causes execution to stop if the breakpoint is
reached twice, and the global variable flag equals 3 each time. When
execution stops, the PRINT command is executed.

The command:

break (funcb) if a + b > 9

specifies that the scope of reference of variables a and b is the function called
funcb, rather than the current function. Execution is suspended when the
sum of these variables is greater than 9. The (function) specification always
requires fewer keystrokes than when you use qualifiers, as in the equivalent
command:

break if function.funcb.a + function.funcb.b > 9

Related Commands
DISABLE, ENABLE, LIST, NOBREAK, STEP, TURN, WRITE

The data types supported by 4GL and the Debugger depend on which
Informix database server you are using. See the Informix Guide to SQL:
Reference for a list of supported data types.
9-44 Guide to the IBM Informix 4GL Interactive Debugger

CALL
CALL
Use CALL to execute a function and display returned values. The Application
screen displays any output. Returned values appear in the Command
window.

The function can be a programmer-defined 4GL function, a 4GL library
function, a C function, or an ESQL/C function. See Appendix B for infor-
mation about using the CALL command with 4GL programs that call C
functions or ESQL/C functions.

The function can contain breakpoints and tracepoints. It does not need to be
part of a completed 4GL program with a main program block.

You can CALL a function before a RUN command has started program
execution. If a function includes SQL statements referencing a database that
is not the current database, you must specify a database before you can CALL
that function.

You can specify a database by a DATABASE command, or by a RUN command
to start the current program, if the program includes an appropriate
DATABASE statement.

It might be necessary to use the CLEANUP command to reinitialize variables
and to close forms and windows before you reexecute a function by repeating
a CALL command.

Any 4GL program variables that you specify as arguments of a CALL
command must be active.

Element Description

argument The value of an argument to be passed to function.

function The identifier of the function that you are invoking.

CALL function

MAIN

argument

,
()
Debugger Commands 9-45

CALL
Examples
The following command executes the main section:

call main()

The next command executes a function called find_cust with arguments of
50 and 0:

call find_cust(50,0)

You can use CALL to execute a built-in 4GL function. For example, the
command:

call err_get(-408)

displays 4GL error message -408 in the Command window.

Related Commands
CLEANUP, DATABASE, FUNCTIONS, RUN, STEP, TRACE, VARIABLE, WHERE

The data types supported by 4GL and the Debugger depend on which
Informix database server you are using. See the Informix Guide to SQL:
Reference for a list of supported data types.
9-46 Guide to the IBM Informix 4GL Interactive Debugger

CLEANUP
CLEANUP
Use CLEANUP to initialize all variables, to close all open windows and forms,
and optionally to close the current database.The CLEANUP command is
helpful when the function that you are executing with a CALL command has
not reached a normal termination, but you want to CALL it again. In some
debugging situations, this command is necessary before you can use a CALL
command to restart a function that terminated abnormally.

If you enter the CLEANUP keyword with no option, the Debugger reini-
tializes all program variables and closes all windows and forms. The
database remains open.

If you include the ALL option after the CLEANUP keyword, the Debugger
reinitializes all the program variables, closes all windows and forms of the
4GL program, and closes the database.

The Debugger automatically closes the current database if the 4GL program
stops because of a fatal error.

It is unnecessary to invoke a CLEANUP command before a RUN command.
Invoking a RUN command automatically reinitializes all program variables
and closes all forms and windows before execution starts.

You cannot use a CONTINUE or STEP command after a CLEANUP command
until a RUN or CALL command resumes program execution.

CLEANUP

ALL
Debugger Commands 9-47

CLEANUP
Examples
In the sequence of commands that follows, the CLEANUP command closes all
windows and forms and reinitializes all program variables but leaves the
current database open:

call home(30,3)
...
cleanup
...
call home(30,3)

Without the CLEANUP command, open windows or forms or variables with
unexpected values might interfere with the second attempt to call the
function.

The command:

cleanup all

closes any open windows or forms, reinitializes all program variables, and
closes the current database.

Related Commands
CALL, DATABASE, EXIT, LET, RUN

The data types supported by 4GL and the Debugger depend on which
Informix database server you are using. See the Informix Guide to SQL:
Reference for a list of supported data types.
9-48 Guide to the IBM Informix 4GL Interactive Debugger

CONTINUE
CONTINUE
Use CONTINUE to resume execution of a program or to send an Interrupt or
Quit signal to a currently running 4GL program.

CONTINUE without any options resumes execution at the first 4GL statement
after an interrupt or breakpoint.

An error message appears if execution has not begun or has terminated, or if
CLEANUP followed the last RUN or CALL command.

The Debugger traps all interrupts. The INTERRUPT and QUIT options send an
Interrupt or Quit signal to your 4GL application to test its signal-handling
code. Whether or not the INTERRUPT or QUIT option interrupts or terminates
execution depends on how the specific 4GL program handles these signals.

Refer to the UNIX stty command for information about setting interrupt
characters. On some systems the default is CTRL-C, but others use DEL or
BREAK. CTRL-\ is the default quit key on many UNIX systems. On systems
that cannot generate a Quit signal, the QUIT option has no effect.

If the INTERRUPT or QUIT option terminates program execution, the
Command window displays the name of the module, function, and line
number of the current 4GL statement when execution stopped. Neither STEP
nor CONTINUE can resume execution, but DUMP, PRINT, and WHERE can
examine active variables and functions.

Examples
If program execution is suspended, the following command resumes
execution of the current 4GL program or function:

continue

CONTINUE

INTERRUPT

QUIT
Debugger Commands 9-49

CONTINUE
The next command sends an Interrupt signal to the 4GL application:

continue int

The next command sends a Quit signal:

continue quit

Whether this stops execution of the application depends on whether a DEFER
QUIT statement in the 4GL code prevents the signal from passing through to
the operating system.

Related Commands
BREAK, CALL, CLEANUP, INTERRUPT, STEP, RUN
9-50 Guide to the IBM Informix 4GL Interactive Debugger

DATABASE
DATABASE
Use DATABASE to specify the current database.

If no database has been specified, a DATABASE command selects one. If you
have a different current database, a DATABASE command closes it and
replaces it with database.

If database is not in your current directory or in your DBPATH variable, then
you must prefix it with a complete pathname.

Element Description

database SQL identifier of an Informix database to which you seek a connection.
(Blank spaces are not valid between quotes nor after the @ symbol.)

pathname Path to the parent directory of the database (pathname/database.dbs).

server The network identifier of the host system where database resides.

DATABASE Database Specification

"database "

database

'database '

pathname /

"database@server "IDS

database "

SE

/ /server /"

"

Database Specification
Debugger Commands 9-51

DATABASE
Invoking the RUN command reopens the database specified in your program.
To use a different database, you must set a breakpoint at the first line in the
main program block and then invoke a DATABASE command to select a new
database when that breakpoint is encountered. You can use CONTINUE to
resume program execution.

Examples
The following command selects the stores7 database:

database stores7

The following sequence of commands sets a breakpoint at the beginning of
main, begins running the program, selects a new database called stereos, and
resumes program execution using the new database:

break main
run 9 5
database /u/dbtest/stereos
continue

This example does not show an actual Command window display, which
would also show output from several of these commands.

Related Commands
CALL, CLEANUP, RUN
9-52 Guide to the IBM Informix 4GL Interactive Debugger

DISABLE
DISABLE
Use DISABLE to turn off a breakpoint or tracepoint.

The ALL option disables all breakpoints and tracepoints in the current 4GL
program.

If a breakpoint or tracepoint is enabled and has the same name as function,
only the breakpoint or tracepoint called name is disabled. If that breakpoint
or tracepoint is already disabled, all breakpoints and tracepoints within
function are disabled.

You have the option of enclosing the name of a breakpoint or tracepoint in
single or double quotes.

DISABLE does not remove breakpoints or tracepoints. You can reactivate a
disabled breakpoint or tracepoint at a later time by invoking the ENABLE
command.

Element Description

function The identifier of a function, all of whose breakpoints and tracepoints are
to be disabled.

name The identifier of a breakpoint or tracepoint that is to be disabled.

refno Integer code of a breakpoint or tracepoint that is to be disabled.
(This reference number was assigned by the Debugger when a BREAK
or TRACE command defined the specified breakpoint or tracepoint.)

DISABLE name

'name '

"name "

refno

function

ALL
Debugger Commands 9-53

DISABLE
If a breakpoint or tracepoint named all is enabled, the DISABLE ALL
command disables the breakpoint or tracepoint rather than disabling all
of them.

Examples
The following command disables the breakpoint or tracepoint whose name
is kn:

disable "kn"

An error message appears if kn cannot be located or if it is not active.

The command:

disable x

disables a breakpoint or tracepoint with name x or all breakpoints and
tracepoints within the function x, while:

disable 1

disables the breakpoint or tracepoint with a reference number of 1.

The following command deactivates all of the breakpoints in the function
add_cust:

disable add_cust

Related Commands
BREAK, ENABLE, LIST, NOBREAK, NOTRACE, TRACE, WRITE
9-54 Guide to the IBM Informix 4GL Interactive Debugger

DUMP
DUMP
Use DUMP to write the names and values of variables in the current (most
recently executed) function to the Command window or to an ASCII file.

An error message appears if you enter a DUMP command when no 4GL
function is active. You cannot use DUMP to evaluate variables that exist only
in C or ESQL/C functions.

After a fatal error or some other action causes the 4GL program to terminate
abnormally, DUMP can evaluate global variables, and variables from the
function in which execution stopped.

If you do not specify GLOBALS or ALL, only the variables in the current
function are evaluated. If you specify GLOBALS, only global variables are
evaluated. If you specify ALL, all global variables and all variables in the
current function are evaluated.

If a file called filename already exists, the Debugger appends the names and
values to the file. Otherwise, the Debugger creates the file. You can specify a
pathname if you want the file saved outside your current directory.

Examples
The following command displays in the Command window the names and
values of all the variables in the current function:

dump

Element Description

filename The name of a file in which to write output from this command. This file
specification can also include a pathname.

GLOBALS

DUMP

>> filename

ALL
Debugger Commands 9-55

DUMP
The following command saves in a file called fnstatus the names and values
of all global variables and of all the variables in the current function:

dump all >> fnstatus

Related Commands
LET, TRACE, VARIABLE

The data types supported by 4GL and the Debugger depend on which
Informix database server you are using. See the Informix Guide to SQL:
Reference for a list of supported data types.
9-56 Guide to the IBM Informix 4GL Interactive Debugger

ENABLE
ENABLE
Use ENABLE to activate a breakpoint or tracepoint.

The ALL option enables all breakpoints and tracepoints in the program.

If a disabled breakpoint or tracepoint name is the same as a function name,
only the breakpoint or tracepoint name is enabled. If that breakpoint or trace-
point is already enabled, all breakpoints and tracepoints within function are
enabled.

The name can be enclosed in single quotes or double quotes.

If a breakpoint or tracepoint called all exists, the ENABLE ALL command
enables it rather than enabling all breakpoints and tracepoints.

Examples
The command:

enable x

Element Description

function The identifier of a function, all of whose breakpoints and tracepoints are
to be enabled.

name The identifier of a breakpoint or tracepoint that is to be enabled.

refno Integer code of a breakpoint or tracepoint that is to be enabled.
(This reference number was assigned by the Debugger when a BREAK
or TRACE command defined the specified breakpoint or tracepoint.)

ENABLE name

'name '

"name "

refno

function

ALL
Debugger Commands 9-57

ENABLE
enables the breakpoint or tracepoint called x, or enables all breakpoints and
tracepoints within the function called x, if the current program calls a
function of that name.

The following command enables the breakpoint or tracepoint with a
reference number of 1:

enable 1

The command:

enable all

activates any disabled breakpoints or tracepoints in the program, or one
called all, if a disabled breakpoint or tracepoint called all exists.

The following command activates a breakpoint or tracepoint called me:

enable "me"

Related Commands
BREAK, DISABLE, LIST, NOBREAK, NOTRACE, TRACE, WRITE
9-58 Guide to the IBM Informix 4GL Interactive Debugger

ESCAPE
ESCAPE
Use the exclamation point (!) to send a command line to the operating
system. You can use this feature to invoke an interactive program, such as a
text editor, that requires keyboard input.

You must use the exclamation point (!) to invoke this command. The string
"_ESCAPE" (with a leading underscore symbol) can be used as an argument
of a HELP command.

When the command terminates, you are prompted to return to the Debugger.
Pressing any key (except !) restores the Command and Source windows. The
cursor returns to the window from which you escaped. If you type another
exclamation point (!) when you are prompted to return to the Debugger
screen, you can enter another operating system command line.

The ESCAPE key has nothing to do with the Escape feature of the Debugger.

Example
If you enter the following command at the Command window or Source
window:

!csh

you create a new C shell. You can work at this shell and then return to the
Debugger by entering exit (the system command, not the Debugger
command) and then pressing any key.

Related Command
HELP

Element Description

command An operating system command to be executed during a debugging
session. Press the exclamation key before entering command.

command!
Debugger Commands 9-59

EXIT
EXIT
Use EXIT to terminate a debugging session.

If you invoked the Debugger directly from the system prompt, EXIT returns
you to that prompt. If you invoked the Debugger from the Programmer’s
Environment, enter EXIT to return to a menu.

If you are at the Application screen with a 4GL program waiting for input or
producing output, you must first press the Interrupt key (typically CTRL-C)
before you can exit.

Example
This command terminates the Debugger:

exit

Related Command
INTERRUPT

EXIT
9-60 Guide to the IBM Informix 4GL Interactive Debugger

FUNCTIONS
FUNCTIONS
Use FUNCTIONS to list in the Command window the names of programmer-
defined 4GL functions in the current application. FUNCTIONS does not list the
names of C or ESQL/C functions.

If no search pattern specification follows the FUNCTIONS keyword, then the
names of all functions in the current 4GL application program are displayed
in the Command window.

The search pattern specifications can include a function name or any
combination of characters, blanks, and the following special characters.

If you specify a search pattern, FUNCTIONS displays every function name
that matches the pattern.

If no function name matches a pattern, the Command window returns only
the $ prompt. No additional message appears.

Element Description

filename The name of a file in which to write output from this command. This file
specification can also include a pathname.

pattern A string of literal characters and (optionally) special characters to use
as a mask in searching for matching identifiers of functions.

Character Description

? Match any single nonblank character

* Match zero or more nonblank characters

[d-q] Match any character between d and q (inclusive) in the ASCII
collating sequence

FUNCTIONS

>> filenamepattern
Debugger Commands 9-61

FUNCTIONS
Examples
The command:

functions

returns the name of every programmer-defined function in the current 4GL
program. The next command:

functions add_cust

searches the source file for a function called add_cust. If the function is found,
its name is displayed in the Command window. The next command:

functions add*

specifies a wildcard pattern that matches the function in the previous
example, as well as any other function whose name starts with add.

The following command lists the names of all the functions whose names
contain the pattern ust, followed by any lowercase letter that comes after m
and before x:

functions *ust[n-w]*

Related Commands
CALL, SEARCH, TRACE, VIEW, WHERE
9-62 Guide to the IBM Informix 4GL Interactive Debugger

GROW
GROW
Use GROW to change the size of the Command and Source windows. The
GROW command changes the sizes of the Command and Source windows by
modifying the values of the COMMAND LINES and SOURCE LINES
parameters.

If you use a GROW command to change the sizes of the Source and Command
windows, your new values persist until you change them with another
GROW command or until an EXIT command ends the debugging session.

If you exit to the Programmer’s Environment and then resume debugging
the same 4GL program without returning to the operating system, your
current window sizes are restored.

The window that you specify increases by lines (or shrinks if lines is less than
zero). The size of the other window changes reciprocally, so that on a
standard 24-line display terminal, the sum of SOURCE LINES and COMMAND
LINES is 19.

On a nonstandard terminal that can display L lines, the initial default size of
COMMAND LINES is (L-4)/2. The initial default value of SOURCE LINES is one
less than this.

The Source window line that displays the name of the 4GL source program
module does not count as a line.

If L is the number of lines that your screen can display, the range of SOURCE
LINES and of COMMAND LINES is from 1 to (L-6). If a GROW command
attempts to set a value of SOURCE LINES or COMMAND LINES outside of this
range, then an error message appears, and the sizes of the windows are not
changed.

Element Description

lines The number of lines to add to the specified window.

-

GROW

COMMAND

SOURCE lines
Debugger Commands 9-63

GROW
The GROW command cannot change the size of the Application screen, the
Help screen, or the operating system display.

Example
To increase the size of the Source window by five lines, enter any of the
following equivalent commands:

grow 5
grow source 5
grow command -5

Related Commands
LIST, WRITE
9-64 Guide to the IBM Informix 4GL Interactive Debugger

HELP
HELP
Use HELP for instructions on using Debugger commands.

If the command that follows the keyword HELP is the full or abbreviated
name of a Debugger command, then the Help screen overwrites the
Command window and Source window with information about how to use
that command.

If no command argument is specified, then a menu-like list of HELP options,
including every command keyword, appears. To display a message about
any of these commands, select the appropriate keyword (by highlighting it
with the arrow keys or by typing it and pressing RETURN).

The ALL option displays a brief synopsis of every command. The same
synopsis appears if you enter a string after the HELP keyword that begins
with a letter but does not correspond to a keyword. For example, your
argument can be v, which is ambiguous, or k, which matches no command.

Besides the Debugger command keywords, the HELP command recognizes
the options _ESCAPE, _INTERRUPT, _SCREEN, _SEARCH, _REDRAW, and
_TOGGLE, representing Debugger commands that are controlled by special
nonalphabetic characters. Each of these options is prefixed by an underscore
(_).

If your argument after the HELP keyword begins with any other nonalpha-
betic character, an error message is displayed rather than a help message.

If a help message is longer than the current screen page, type S or press
RETURN to see the next page.

Element Description

command The full or abbreviated name of any Debugger command.

command

HELP

ALL
Debugger Commands 9-65

HELP
After a help message has been displayed, type R or RETURN to restore the
Debugger screen.

Examples
The following command displays a message about the TRACE command,
based on the description of TRACE in this chapter:

help trace

Enter the following command to see the list of Help message topics:

h

You can use the arrow keys and press RETURN to display a message about a
specific topic. If you enter:

help all

the screen displays a synopsis of Debugger command syntax.

Related Commands
ESCAPE, INTERRUPT
9-66 Guide to the IBM Informix 4GL Interactive Debugger

INTERRUPT
INTERRUPT
Press the Interrupt key (typically CTRL-C) from the Application screen or the
Source window to make the Command window your current window. If the
4GL program is running, pressing the Interrupt key suspends program
execution at the current 4GL statement.

Like the names of the Escape feature and the Redraw, Screen, Search, and
Toggle commands, INTERRUPT is not a Debugger keyword, but it appears at
the top of this page and among the HELP topics so that you can find these
notes. Prefix the word INTERRUPT with an underscore (_) when you use it
as an option of the HELP command.

The Interrupt key is the key specified by the stty command (often CTRL-C or
DEL).

If the Source window is your current window when you press the Interrupt
key, the cursor moves to the Command window and is ready for a command.
(If EXITSOURCE is ON, pressing any alphabetic key has the same effect.)

If the Application screen is your current window, pressing the Interrupt key
restores the Debugger screen. The Command window becomes your current
window.

If a 4GL statement is executing, pressing the Interrupt key stops execution
immediately after the statement. If DISPLAYSTOPS is ON, the next statement
to be executed is highlighted in the Source window.

Pressing the Interrupt key stops execution of an application by interrupting
the Debugger process that interprets the program rather than by passing an
Interrupt signal to the 4GL program. You must use the CONTINUE
INTERRUPT command rather than the Interrupt key if you want to test how
a 4GL application handles an Interrupt signal.

Element Description

i The Interrupt key, usually CTRL-C or DEL, or whatever physical key of
the keyboard is assigned as the logical Interrupt key on your system.

i

Debugger Commands 9-67

INTERRUPT
Pressing the Interrupt key repeatedly while a 4GL program is running can
produce unpredictable results. When the Application screen is your current
window, for example, consecutive interrupts might result in an incorrect
display of the Command and Source windows. If this happens, press CTRL-R

to redraw the screen.

Example
If the Source window is your current window, pressing the Interrupt key
makes the Command window your current window.

If you used the Toggle key to switch from the Source window to the
Application window, pressing the Interrupt key switches to the Debugger
screen and makes the Command window your current window.

If the application program is waiting for input, pressing the Interrupt key
suspends program execution after the current 4GL statement and makes the
Command window your current window.

Related Commands
BREAK, CONTINUE, EXIT, REDRAW, TURN
9-68 Guide to the IBM Informix 4GL Interactive Debugger

LET
LET
Use LET to assign an expression to a variable. If a 4GL program assigns to a
variable a value that is different from what you intended, you can use the LET
command to substitute the intended value. This allows you to continue
examining a program without terminating a debugging session to modify
and recompile the source code after you find the first flaw in program logic.

Because a LET command has no effect on the source code, you must subse-
quently correct the source code if it assigns an improper value to a program
variable.

The value that a LET statement assigns to a variable should be consistent with
its data type declaration. If the two are different, the Debugger attempts to
convert the value. This might result in truncation. An error message appears
if the conversion fails.

The syntax of a LET command closely resembles the syntax of a 4GL LET
statement. You must enclose character expressions in quotation marks.

An expression can contain a substring of a character array. It cannot include
variables from multiple functions or variables from functions that are not
active. You cannot use LET to reference variables unless program execution is
suspended, or has terminated abnormally, after a RUN or CALL command.

The expression can include the following date and datetime functions.

Element Description

expression An expression whose value is to be assigned to the variable.

DATE() DAY() MDY() TODAY

MONTH() WEEKDAY() YEAR() CURRENT

LET expression=Variable
p. 9-16
Debugger Commands 9-69

LET
You can qualify the variable. See “Scope of Reference” on page 9-16 for more
information.

If you follow a LET command with a RUN command, the RUN command will
reinitialize all the program variables, restoring their original values.

To avoid having your work undone in this way, set a breakpoint before a 4GL
statement that uses a variable whose value is incorrect. After the breakpoint
stops program execution, use a LET command to assign a new value and
invoke CONTINUE to resume execution with the corrected value.

Examples
The following command assigns the letter y to the variable answer:

let answer = "y"

The following command:

let global.rfrsh_flg = function.main.x/23

divides by 23 the variable called x that was defined in the main program
block and assigns the resulting value to the global variable rfrsh_flg. If the
data type of global.rfrsh_flg is INTEGER, the decimal portion of the value is
discarded.

If x is of type CHARACTER, the command:

let x[101,101] = y

replaces the current value of the 101st character of x with the value of 4GL
program variable y.

The following examples show the LET command with DATETIME and
INTERVAL constants and with the CURRENT function:

LET dt1 = CURRENT

LET dt2 = DATETIME(1989-6-16 16:01:33) YEAR TO SECOND

LET dt3 = dt4

LET iv1 = INTERVAL(45-7) YEAR TO MONTH

LET iv2 = INTERVAL (12 15:25:35) DAY TO SECOND

LET iv3 = 5 UNITS DAY
9-70 Guide to the IBM Informix 4GL Interactive Debugger

LET
Related Commands
DUMP, PRINT, RUN, TRACE, VARIABLE

The data types supported by 4GL and the Debugger depend on which
Informix database server you are using. See the Informix Guide to SQL:
Reference for a list of supported data types.
Debugger Commands 9-71

LIST
LIST
Use LIST to display the current breakpoints, tracepoints, and terminal display
parameters.

If you specify BREAK, the Command window displays the reference numbers
and other specifications of the currently enabled and disabled breakpoints.

If you specify TRACE, the Command window displays the reference numbers
and other specifications of the currently enabled and disabled tracepoints.

If you specify DISPLAY, the Command window lists the current values of the
following display parameters:

■ AUTOTOGGLE, when on, switches to the Application screen on
output.

■ DISPLAYSTOPS, when on, highlights in the Source window the next
line to execute when the Debugger stops.

■ EXITSOURCE, when on, switches from the Source window to the
Command window at any alphabetic key.

■ PRINTDELAY, when on, updates the Command window one line at a
time or in blocks of several lines.

■ SOURCETRACE, when on, highlights each line of source code as it
executes.

■ SOURCE LINES tells how many lines of source code appear in the
Source window.

■ COMMAND LINES tells how many lines of the command buffer
appear in the Command window.

■ TIMEDELAY SOURCE tells how long to pause between steps when
SOURCETRACE is ON.

LIST

TRACE

BREAK

DISPLAY
9-72 Guide to the IBM Informix 4GL Interactive Debugger

LIST
■ TIMEDELAY COMMAND tells how long to pause between displaying
successive lines of Debugger output in the Command window.

■ APPLICATION DEVICE tells if a separate terminal has been specified
for the display of the Application screen.

See the TURN command for more information about the parameters
AUTOTOGGLE, DISPLAYSTOPS, EXITSOURCE, PRINTDELAY, and
SOURCETRACE.

If you do not specify any option, the Command window displays all of the
information described in this section.

Besides LIST, other commands that can display information about your
current debugging session are ALIAS, DUMP, FUNCTIONS, PRINT, USE,
VARIABLE, and WHERE.

Examples
The following command displays in the Command window all of the current
breakpoints, tracepoints, and terminal display parameters:

list

The following LIST command displays all the breakpoints in the current 4GL
program:

list break

This abbreviated command has the same effect:

li br

The following command lists the current display parameters and tracepoints:

list display trace

This abbreviated command has the same effect:

li d tr

Related Commands
APPLICATION DEVICE, BREAK, GROW, READ, TIMEDELAY, TRACE, TURN
Debugger Commands 9-73

NOBREAK
NOBREAK
Use NOBREAK to remove a breakpoint. To deactivate a breakpoint that you
might later want to reactivate, use the DISABLE command rather than
NOBREAK.

The LIST BREAK command displays the current reference numbers and
names that can be used for the refno or name options of a NOBREAK
command.

The ALL option removes all breakpoints in the program. If a breakpoint
called all exists, the Debugger removes only that breakpoint rather than all of
them.

If you specify function, the Debugger removes all breakpoints within the
function. If a breakpoint and a function have the same name, only the break-
point called name is removed. In that case, all breakpoints within function
remain.

As an option, you can place name within a pair of single or double quotes.

Element Description

function The identifier of a function, all of whose breakpoints are to be removed.

name The identifier of a breakpoint that is to be removed.

refno Integer code of a breakpoint that is to be removed. (This reference number
was assigned when a BREAK command defined the breakpoint.)

NOBREAK name

'name '

"name "

refno

function

ALL
9-74 Guide to the IBM Informix 4GL Interactive Debugger

NOBREAK
Examples
The command:

nobreak fnbr

removes a breakpoint called fnbr if a breakpoint of that name exists.
Otherwise it removes all of the breakpoints in a function called fnbr. An
unambiguous command to remove a breakpoint called fnbr is as follows:

nobreak "fnbr"

The command:

nobreak 4

removes the breakpoint whose reference number is 4.

Related Commands
BREAK, DISABLE, ENABLE, LIST, STEP, WRITE
Debugger Commands 9-75

NOTRACE
NOTRACE
Use NOTRACE to remove a tracepoint. To deactivate a tracepoint that you
might later want to reactivate, use the DISABLE command rather than
NOTRACE.

The LIST TRACE command displays the current reference numbers and any
names that can be used for the refno or name options of a NOTRACE command.

The ALL option removes all tracepoints in the program. If a tracepoint called
all exists, the Debugger removes only that tracepoint rather than all of them.

If you specify a function, the Debugger removes all tracepoints within the
function. If a tracepoint and a function have the same name, only the trace-
point called name is removed. In that case, all tracepoints within function
remain.

As an option, you can place name within a pair of single or double quotes.

Element Description

function The identifier of a function, all of whose tracepoints are to be removed.

name The identifier of a tracepoint that is to be removed.

refno Integer code of a tracepoint that is to be removed. (This reference number
was assigned when a TRACE command defined the tracepoint.)

NOTRACE name

'name '

"name "

refno

function

ALL
9-76 Guide to the IBM Informix 4GL Interactive Debugger

NOTRACE
Examples
The command:

notrace fntr

removes a tracepoint called fntr if a tracepoint of that name exists. Otherwise
it removes all of the tracepoints in a function called fntr. An unambiguous
command to remove a tracepoint called fntr is as follows:

notrace "fntr"

The command:

notrace 5

removes the tracepoint whose reference number is 5.

The next command:

notrace all

removes all tracepoints from the current program if no tracepoint with the
name all exists.

Related Commands
DISABLE, ENABLE, LIST, TRACE, WRITE
Debugger Commands 9-77

PRINT

9-78 Guide to the IBM Informix 4GL Interactive Debugger
PRINT
Use PRINT to display the value of an expression or save it in a file. You can
use PRINT to display the current values of an entire record or array by speci-
fying only its name as the expression.

An expression can be the name of a variable, a record, a date or datetime
function, or an array. It can be a quoted string or an arithmetic expression. It
cannot include nonglobal variables from multiple functions or from a
function that is not active.

You can qualify variable names in an expression. If a nonglobal variable is
defined in another active function that is not the current function, you must
qualify the variable if you reference it in a PRINT expression. See “Scope of
Reference” on page 9-16 for more information.

The expression can include the following date and datetime functions.

The expression cannot reference any program variable unless a CALL or RUN
command has started program execution.

An expression can specify substrings of a character array.

If you do not specify filename, the returned values are displayed in the
Command window. The filename can include a pathname if you want the
values saved in a disk file outside the current directory.

Element Description

expression An expression whose value is to be displayed by this command.

filename The name of a file in which to write output from this command. This file
specification can also include a pathname.

DATE() DAY() MDY() TODAY

MONTH() WEEKDAY() YEAR() CURRENT

PRINT

>> filename

expression

PRINT
If you redirect output to a file that already exists, the Debugger appends the
output to filename. Otherwise, the file is created.

You can use PRINT as a calculator during debugging sessions to perform
arithmetic operations.

Examples
The following command displays the value of variable x:

print x

This can be a simple variable, a record, or an array. (You can use the
abbreviated command pr instead of print.)

The following command divides 365 by 7 and displays the result in the
Command window:

print 365/7

The following command displays an entire SQLCA record on the screen:

print sqlca

The following command displays the current system date and time:

print current

The following command copies to the disk file called glbstatus the current
value of sqlcode:

print global.sqlca.sqlcode >> glbstatus

If wrtschz is the name of a variable of type CHARACTER, the command:

print wrtschz[1,20]

displays a substring that includes the first 20 characters of the current value
of wrtschz.

Related Commands
CALL, DUMP, LET, RUN, TRACE, VARIABLE

The data types supported by 4GL and the Debugger depend on which
Informix database server you are using. See the Informix Guide to SQL:
Reference for a list of supported data types.
Debugger Commands 9-79

READ
READ
The READ command enables you to execute Debugger commands that are
specified in an ASCII file. These commands are executed, and their output is
displayed in the Command window.

If you use a WRITE command to save features of a debugging session in
filename, you can use a subsequent READ command to reestablish those
features.

You can also create filename.4db with an editor, or you can use an editor to
modify a .4db file that you created with WRITE, and then use READ to execute
its commands.

The required extension of filename is .4db. You do not need to include the
extension when you specify the filename in a READ command.

If you want to read a .4db file that is outside your current directory, you can
prefix filename with a pathname.

You can include READ commands in the .4db file of a READ command. Error
messages will appear, however, if you establish more than 10 levels of nested
READ commands or if you attempt to READ a file that is still being processed
by another READ command.

Element Description

filename The name of a file in which to write output from this command. This file
specification can also include a pathname.

READ filename .4db
9-80 Guide to the IBM Informix 4GL Interactive Debugger

READ
You cannot use READ to execute the following commands or control
characters, which are not based on keywords.

Example
The following command reads and executes the Debugger commands
contained in file stdtest.4db:

read stdtest

Related Commands
WRITE

Command Function

Escape feature (!) Operating system commands

Interrupt Switches control to Command window

Search (/, ?) Searches for patterns

CTRL-P Saves screen display as a file

CTRL-Q Enables terminal I/O

CTRL-R Redraws screen display

CTRL-S Suspends terminal I/O

CTRL-T Toggles Application screen
Debugger Commands 9-81

REDRAW
REDRAW
Press CTRL-R to redraw the Source and Command windows, the Application
screen, or Help screen. On some terminals, sequences of Debugger
commands can sometimes produce an anomalous screen display. For
example, repeatedly pressing the Interrupt key when the Application screen
prompts you for input can produce unexpected results.

If you think that your Application screen, Help screen, Source window, or
Command window has been incorrectly updated, press CTRL-R to redraw the
current screen display.

If your current window is the Command window or the Source window,
pressing CTRL-R redraws both windows.

Like the names of the Escape feature, Interrupt, Screen, Search, and Toggle
commands, REDRAW is not a Debugger keyword, but it appears at the top of
this page and among the HELP topics so that you can find these notes. You
must prefix the name REDRAW with an underscore (_) to use it as an option
of the HELP command.

If you are using a second terminal to display the output of the application
program, CTRL-R redraws both screens.

Example
Pressing CTRL-R redraws the current screen.

Related Commands
APPLICATION DEVICE, HELP, INTERRUPT, SCREEN

Element Description

r The Redraw key, CTRL-R, which redraws the current window.

r

9-82 Guide to the IBM Informix 4GL Interactive Debugger

RUN
RUN
Use RUN to start or restart execution of a 4GL program during a debugging
session. Before a RUN command restarts a 4GL program, it first performs the
functions of a CLEANUP command. The Debugger closes the database and
any open windows or forms and initializes all program variables with zero
or null values.

If multiple arguments are used, separate each one with spaces.

If you execute RUN more than once within the same debugging session, the
same arguments are reused. You can change the arguments by specifying
new ones when you execute RUN.

If you use RUN to restart a program that contains an enabled breakpoint with
a count specification, RUN reinitializes count to the starting value. (Use
CONTINUE or STEP if you want to maintain the current values.)

You cannot include RUN in the commands list of a tracepoint.

Example
The command:

run 1000 1

initializes all of the 4GL variables, closes any open forms or windows, and
resets the counts of all breakpoints at their starting values. Then it starts (or
restarts) the current 4GL application with two arguments.

Related Commands
BREAK, CALL, CONTINUE, INTERRUPT, STEP

Element Description

argument The value of an argument to be passed to the program.

RUN

argument
Debugger Commands 9-83

SCREEN
SCREEN
Press CTRL-P to save the current display of the Source and Command
windows or of the Application screen in a disk file. This facility enables you
to record the displays of the Debugger and of the 4GL application program.
Like other Debugger commands to display information, this can simplify the
task of documenting debugging sessions.

Like the names of the Escape, Interrupt, Redraw, Search, and Toggle
commands, SCREEN is not a Debugger keyword, but it appears here and
among the HELP topics so that you can find these notes. You must prefix the
name SCREEN with an underscore (_) to use it as an option of the HELP
command.

If your current window is the Source window or the Command window,
pressing CTRL-P saves the current screen display in a disk file called fgldbscr.
If this file already exists, the Debugger appends the current display to the file.

If your current window is the Application screen, pressing CTRL-P saves the
current screen display in a disk file called fglapscr. If this file already exists,
the Debugger appends the current display to the file.

If you have used an APPLICATION DEVICE command to designate a second
terminal for program output, your current window does not matter to the
Screen command. After you press CTRL-P, the Debugger updates both the
fgldbscr and fglapscr files with the current contents of the Debugger screen
and of the Application screen, respectively.

Examples
Pressing CTRL-P saves the current screen display in a file.

Element Description

p The Screen key, CTRL-P, which saves the current screen display in a file.

p

9-84 Guide to the IBM Informix 4GL Interactive Debugger

SCREEN
Related Command
APPLICATION DEVICE
Debugger Commands 9-85

SEARCH
SEARCH
Use Search commands to search for text patterns within the Source window
or Command window. Do not confuse the Search command, which searches
for patterns in text strings, with the USE command, which displays or
specifies the directory search path for source files.

You usually must use the slash (/) or the question mark (?) to initiate a
search. The keyword SEARCH, prefixed by an underscore (_), is a HELP
command option to display information about searching in the Source or
Command window.

If you have already invoked a Search command from the Source window
since the last VIEW command, pressing RETURN at that window repeats the
last search from the current cursor position.

Searching forward means down, and backward means up, relative to the
cursor position before a Search command.

The Debugger searches only within the current window. It searches the entire
source module or command buffer in the specified direction, including
patterns not currently displayed on the screen.

The Search command is case sensitive and does not regard any lowercase
letter as matching any uppercase letter.

The previous pattern is considered the default if you specify no pattern.

Element Description

pattern A string of literal characters and (optionally) special characters to use
as a mask in searching for matching strings within text of the Command
window or Source window (whichever is the current window).

/ The forward Search key.

? The backward Search key.

pattern/

?

9-86 Guide to the IBM Informix 4GL Interactive Debugger

SEARCH
You can use the following special characters.

A Search command does not require a leading and trailing asterisk (*)
wildcard to find substrings. In this it differs from the FUNCTIONS command,
which requires wildcard terminators to find embedded strings.

Examples
The command:

?a*b

searches backward in the current window for any string in which a precedes
b. Here the question mark is the Search backward command key, not the
wildcard.

The command:

/p?g

searches forward in the current window for any three characters beginning
with p and ending with g. The command:

/[L-N]?a[a-b]d

searches forward in the window for five-character strings, beginning with L,
M, or N, followed by any character and ending in either aad or abd.

Related Commands
FUNCTIONS, VIEW

Character Description

? Match any single nonblank character

* Match zero or more nonblank characters

[d-p] Match any letter between d and p (inclusive) in the ASCII collating
sequence
Debugger Commands 9-87

STEP
STEP
Use STEP to execute one or more individual 4GL statements. Each step is a
single executable 4GL statement. Variable definition statements, blank lines,
and comments are not executable statements.

If the DISPLAYSTOPS display parameter is ON, the first step executes the
statement that was highlighted in the Source window when you invoked the
STEP command.

The default value of count is 1. If count is not specified, only the next
statement is executed.

A function call is treated as a single statement unless you specify the INTO
option. If you specify INTO, each executable statement in a function is a step.
You cannot STEP INTO a C function or a 4GL library function.

Execution stops if a step reaches a statement that contains an enabled break-
point, unless you specify the NOBREAK option. If neither the INTO nor
NOBREAK option is specified, execution stops if a step reaches a function that
contains an enabled breakpoint.

If you specify NOBREAK, breakpoints have no effect while the STEP
command is executing. This does not remove breakpoints, but it causes the
Debugger to ignore breakpoints during the current STEP command.

Before you can invoke STEP, you must first begin execution with CALL or
RUN, and then suspend execution with a breakpoint or with an Interrupt
command. STEP elicits an error message after execution terminates or after a
CLEANUP command.

Element Description

count The number of 4GL statements to be executed.

STEP

count

1

NOBREAKINTO
9-88 Guide to the IBM Informix 4GL Interactive Debugger

STEP
Examples
The following command executes the next line as one statement, even if it
includes a function call:

step

The following command executes the next 12 statements, not counting the
statements inside functions as steps. Execution stops at enabled breakpoints
or at the call of a function that contains an enabled breakpoint.

step 12

The following command executes the next 10 4GL statements. If a function
call is encountered, executable statements within the function are counted as
individual steps. If an enabled breakpoint is encountered before the 10 state-
ments are executed, the program stops at the breakpoint.

step 10 into

The following command executes the next five statements, counting state-
ments inside functions as steps. Execution does not stop at breakpoints.

step 5 into nobreak

Including or not including the INTO or NOBREAK options can produce very
different results when you STEP through a 4GL program that calls a function
containing a breakpoint. Suppose that your Source window displayed the
following 4GL source code. An enabled breakpoint has been set at line 8, and
program execution is currently suspended at line 2.

1 MAIN
2 CALL a()
3 END MAIN
4
5 FUNCTION a()
6 DEFINE i INTEGER
7 LET i = 7

>8 DISPLAY i
9 DISPLAY "DONE"

10 END FUNCTION
Debugger Commands 9-89

STEP
The table lists the STEP commands and the lines at which they stop executing.

Related Commands
BREAK, CALL, CONTINUE, ENABLE, DISABLE, FUNCTIONS, NOBREAK,
RUN, TRACE

STEP Command Stops at Line

STEP 8

STEP INTO 7

STEP NOBREAK 3

STEP INTO NOBREAK 7

STEP 3 8

STEP 3 INTO 8

STEP 3 INTO NOBREAK 9
9-90 Guide to the IBM Informix 4GL Interactive Debugger

TIMEDELAY
TIMEDELAY
Use TIMEDELAY to specify how quickly the 4GL application in the Source
window executes when the SOURCETRACE display parameter is ON or how
quickly successive lines of Debugger output appear in the Command
window.

This command controls two independent display parameters, TIMEDELAY
SOURCE and TIMEDELAY COMMAND. The first parameter affects the Source
window, and the second affects the Command window.

The TIMEDELAY SOURCE command specifies how many seconds the current
line in the Source window remains highlighted when SOURCETRACE is ON.
The default window specification is SOURCE. The TIMEDELAY SOURCE
command only affects Debugger operations when the SOURCETRACE
parameter is ON.

The default value of TIMEDELAY SOURCE is 1, corresponding to a one-second
delay after each line of the 4GL application program in the Source window is
highlighted.

A delay longer than the default value might be helpful when you are
examining a brief or unfamiliar program, but it increases execution time by a
factor of seconds.

To speed up a debugging session, you can set TIMEDELAY SOURCE to zero,
the minimum value.

TIMEDELAY COMMAND specifies the number of seconds delay before
successive lines of output from the Debugger appear in the Command
window.

Element Description

seconds The duration of the delay, in seconds.

TIMEDELAY

secondsCOMMAND

0

1SOURCE
Debugger Commands 9-91

TIMEDELAY
The default value of TIMEDELAY COMMAND is zero, corresponding to no
delay between listing successive lines of Debugger output in the Command
window. If output is being produced faster than you can read it, you can
specify a delay of one or more seconds between new lines of output in the
Command window.

On a fast system, a delay longer than the default value might be helpful when
a command like LIST or READ is producing abundant output. An alternative
to resetting TIMEDELAY COMMAND is to use the Search command or cursor
movement keys to view lines of the command buffer that scrolled past too
quickly to read.

Examples
The following command replaces the current value of TIMEDELAY SOURCE
with 2:

timedelay 2

Because SOURCE is the default window specification, this is equivalent to the
following command:

timedelay source 2

When SOURCETRACE is ON, two seconds elapse between the execution of
successive lines in the Source window.

The following command replaces the current value of TIMEDELAY
COMMAND with 1:

timedelay command 1

This causes the Command window to pause a full second between
displaying successive lines of Debugger output.

Related Commands
LIST, TURN, WRITE
9-92 Guide to the IBM Informix 4GL Interactive Debugger

TOGGLE
TOGGLE
Press CTRL-T to switch your screen display from the Debugger screen to the
Application screen.

If your current window is the Source window or the Command window,
pressing the Toggle key (CTRL-T) displays the Application screen, so you can
see the screen output of the 4GL application program.

You cannot supply input to the 4GL program after a Toggle command
displays the Application screen. Pressing the Toggle key again restores the
Debugger screen and the previous current window. Pressing any other key
(except CTRL-S, CTRL-P, CTRL-Q, or CTRL-R) makes the Command window the
current window.

Like the names of the Escape feature and the Interrupt, Screen, Search, and
Redraw commands, TOGGLE is not a Debugger keyword, but it appears here
and among the HELP topics so that you can find these notes. You must prefix
the name TOGGLE with an underscore (_) to use it as an option of the HELP
command.

If you have used an APPLICATION DEVICE command to display output from
the 4GL application on a different terminal, then pressing CTRL-T has no effect.

Unless you use the Toggle key or an APPLICATION DEVICE command, the
Application screen only appears when the 4GL program produces screen
output or requires keyboard input. If you have entered a TURN OFF
AUTOTOGGLE command, the Application screen does not appear when the
program produces output unless you press CTRL-T.

If the 4GL program produces no output, the Application screen will be empty.

Element Description

t The Toggle key, CTRL-T, which switches the current screen display from
the Debugger screen to the Application screen or vice versa.

t

Debugger Commands 9-93

TOGGLE
Example
Pressing CTRL-T displays the Application screen.

Related Commands
APPLICATION DEVICE, INTERRUPT, SCREEN, TURN
9-94 Guide to the IBM Informix 4GL Interactive Debugger

TRACE
TRACE
Use TRACE to show when a statement or function executes or when the
value of a program variable changes. The Debugger assigns a unique
reference number to each tracepoint. When the Debugger executes a TRACE
command, the Command window displays the reference number and other
specifications of the new tracepoint. These can include its name, line number,
function, module, output file, commands to execute, and scope.

If you include a (function) specification, the function that you name overrides
the current function in the Source window in determining the scope of a
variable on which you set a tracepoint.

module .

TRACE

*

function()

"name "

'name '

Variable
p. 9-16

{ }command

;

line

function

FUNCTIONS

>> filename

Element Description

command A keyword-based Debugger command to execute when the tracepoint is
reached. Search, Escape, and control-key commands are not valid here.

filename The name of a file in which to write output from this tracepoint. This file
specification can also include a pathname.

function The identifier of a function. Between parentheses, this overrides the
current function as the scope of any variable on which the tracepoint is
set. Without parentheses, this tracepoint is set when function is called.

line The line number in the current module (if no module is specified) at
which this tracepoint is set.

module The filename of the source-code module at which this tracepoint is set
when program execution reaches the specified line.

name The identifier that you declare for this tracepoint. The name must be
enclosed between a pair of single or double quotation marks .
Debugger Commands 9-95

TRACE
If you specify a name, you must enclose the name in either single or double
quotation marks. The name of a tracepoint must not duplicate the name of
another breakpoint or tracepoint. It must start with a letter, but the subse-
quent characters can be letters, numbers, or underscores (_).

If the (function) name is specified and module is omitted, then line refers to the
line number in the module that contains the function. If both the (function)
and module names are omitted, then line refers to the module displayed in the
Source window.

If line does not correspond to an executable statement, the tracepoint is set at
the next executable statement following that line.

When you set a tracepoint on a variable, the variable name and its contents
are displayed each time that the value of the variable changes. You cannot
specify a variable that is a record or an array. You can, however, specify a
variable that is a member of a record or an element of an array.

If you specify commands while tracing a function, the commands are executed
only when the function is entered.

When you set a tracepoint on a function, the Debugger displays the function
name and parameters when the function is entered. When execution of the
function is completed, the Debugger displays the function name and
returned values in the Command window. You can specify any function that
the current program calls, including a C function, an ESQL/C function, or a
4GL library function.

If you specify a commands list, you must enclose it within braces ({ }). Use a
semicolon to separate commands. The commands list cannot include a CALL,
CONTINUE, STEP, or RUN command.

The scope of reference of any variables in the commands list is determined by
their qualifiers and by the function that is current when the tracepoint takes
effect. The Debugger disregards whatever function was current when you
issued a TRACE command and ignores the (function) option in identifying the
scope of any variables in commands.

You can qualify variable names. See the section “Scope of Reference” earlier
in this chapter for more information.

The FUNCTIONS option sets a tracepoint on every function. You cannot
abbreviate the FUNCTIONS keyword.
9-96 Guide to the IBM Informix 4GL Interactive Debugger

TRACE
There is no restriction on the number of tracepoints that you can set at
any time.

For typical debugging tasks, the PRINTDELAY parameter should be OFF
when you are using tracepoints to trace program logic.

Setting a tracepoint with the TRACE command also enables the tracepoint,
unless you include the asterisk (*) symbol. You can use the asterisk (*)
option to create a tracepoint without enabling it. Use this option to define
tracepoints that you would like to save for future debugging sessions, but
that you do not want to be active in the current one. The tracepoint is
specified but disabled, as if you had set it and then used a DISABLE command
to disable it.

Examples
The following command establishes a tracepoint with no name at line 15 of
the current module:

trace 15

The Command window displays its reference number, the word trace, and its
function, line number, module, and scope of reference. For example:

(1) trace main:15 [r_main.4gl]
scope function: main

If you enter the command:

trace x

the Debugger first searches for a function called x. If x is a function of the
current program, the Command window displays its name and parameters
when the function is entered and its name and returned values after the
function returns.

If no function called x is found, the Debugger searches for a variable called x,
applying the scope of reference rules. If variable x is found, its name and
value are displayed in the Command window whenever its value changes.
Debugger Commands 9-97

TRACE
If both a function and a variable have the name x, you must prefix the
variable with appropriate qualifiers in a TRACE command to set a tracepoint
on the variable. If neither a function nor a variable called x is found, the
Command window displays the following error message:

-16351: Variable [x] could not be located.

The following command displays the name and value of the sqlcode variable
whenever it changes:

trace global.sqlca.sqlcode

Because sqlcode is set at zero after each successfully executed SQL statement,
this tracepoint identifies queries that return no rows, and it returns unsuc-
cessfully executed statements.

The following command traces the execution of all functions and executes
a PRINT command to display the current value of the global variable
sqlca.sqlcode when each function is entered:

trace functions {print global.sqlca.sqlcode}

The command:

trace * "vestige" cmenu.12 {va all} >> vestigial

specifies (but does not enable) a tracepoint called vestige at the 12th line of
the module called cmenu. If you later enable this tracepoint and execute the
4GL statement in this line, the Debugger executes a VARIABLE ALL command
when the tracepoint is reached and saves the output from this command in a
disk file called vestigial.

The following command sets a tracepoint on member b of the record named
reca in function funca:

trace (funca) reca.b

The Debugger will display the name and value of reca.b whenever it changes
in funca but will ignore any variable called reca.b in other functions. The
(function) specification requires fewer keystrokes than using qualifiers, as in
the equivalent command:

trace function.funca.reca.b
9-98 Guide to the IBM Informix 4GL Interactive Debugger

TRACE
Related Commands
DISABLE, ENABLE, LIST, NOTRACE, TURN, WRITE

The data types supported by 4GL and the Debugger depend on which
Informix database server you are using. See the Informix Guide to SQL:
Reference for a list of supported data types.
Debugger Commands 9-99

TURN
TURN
The TURN command controls several terminal display parameters.

If you TURN OFF AUTOTOGGLE, there are only three situations in which you
can see the Application screen:

■ If keyboard input is requested by the 4GL program

■ If you toggle to the display by pressing CTRL-T

■ If you have directed output to a second terminal by an APPLICATION
DEVICE command

If you TURN ON AUTOTOGGLE, the Application screen is displayed when the
4GL program produces screen output, as well as under the three preceding
conditions.

If you TURN OFF DISPLAYSTOPS, after execution of a 4GL program stops, the
Command window displays the next executable 4GL statement. The Source
window does not display or highlight the next statement unless a fatal error
occurs.

If you TURN ON DISPLAYSTOPS, after execution stops, the Source window
displays and highlights the next statement that will be executed. The
Command window displays information about the statement but not the
actual statement.

ON

DISPLAYSTOPS

TURN

OFF

SOURCETRACE

PRINTDELAY

EXITSOURCE

AUTOTOGGLE
9-100 Guide to the IBM Informix 4GL Interactive Debugger

TURN
If you TURN OFF EXITSOURCE, the only command that switches you from the
Source to the Command window is an interrupt. If you TURN ON
EXITSOURCE, then pressing any alphabetic key in the Source window makes
the Command window your current window and echoes your keystroke
after the $ prompt.

If you TURN OFF PRINTDELAY, the Command window displays output by
scrolling up a single line at a time. If you TURN ON PRINTDELAY, the screen
is updated in blocks of lines (about a third of the Command window) when
a command produces multiple lines of screen output.

If you TURN OFF SOURCETRACE, the Source window does not highlight lines
as they are executed, and does not adjust its display to include the currently
executing line. (If an error occurs, however, the Source window always
displays and highlights the line containing the error.) If you TURN ON
SOURCETRACE, the Source window displays and highlights each line as it
executes.

Unless a TURN command or a .db4 file establishes other values, the default
values of these display parameters are equivalent to the results of the
following commands:

■ TURN ON AUTOTOGGLE

■ TURN ON DISPLAYSTOPS

■ TURN ON EXITSOURCE

■ TURN OFF PRINTDELAY

■ TURN OFF SOURCETRACE

You can use the LIST DISPLAY command to show the current values of these
parameters in the Command window.

The current values of these display parameters persist until another TURN
command changes them or until you end the debugging session with an EXIT
command. If you exit to the Programmer’s Environment and then resume
debugging the same 4GL program without returning to the operating system,
your current display parameters are restored.
Debugger Commands 9-101

TURN
Examples
The command:

turn off autotoggle

prevents the Application screen from appearing when the current 4GL
program produces output without requiring input.

The following command specifies that DISPLAYSTOPS and PRINTDELAY are
ON:

turn displaystops printdelay

When DISPLAYSTOPS is ON, the Source window displays the current 4GL
statement after program execution stops.

When PRINTDELAY is ON, multiple-line output from a Debugger command
is added to the command buffer in blocks of lines, rather than a single line at
a time.

The following command turns OFF the AUTOTOGGLE, EXITSOURCE, and
SOURCETRACE parameters:

turn off a e s

It is usually convenient to abbreviate the options of TURN because if you
misspell a keyword, your display parameters are not modified, and an error
message appears. For example, an invalid TURN command such as:

turn on autototoggle

elicits the following error message:

-16364: Unknown option [autototoggle]

Related Commands
INTERRUPT, LIST, WRITE
9-102 Guide to the IBM Informix 4GL Interactive Debugger

USE
USE
Use the USE command to specify or display the source file search path. The
USE command allows you to see the source code when you step into a
module that is not in your current directory. It does not execute an alternate
p-code. You still need to fglpc each module and cat them together to make
the executable p-code.

Enter a USE command without any arguments to display your current
directory search path for 4GL source files.

If any of your source files are in directories outside your current search path,
the USE command enables you to add the pathnames of one or more
additional directories to the current directory search path. If you list multiple
pathnames in a USE command, the first directory that will be searched is
specified by the first pathname, the second by the second pathname, and so
forth.

If you include the equal sign (=) in a USE command, the new pathnames
replace the current search path. If you do not include the equal sign (=), the
pathnames take precedence in the order of search, ahead of the following
directories:

■ Directories from previous USE commands

■ The current directory

■ The directory associated with the 4GL program

■ Directories listed after the -I symbols in a fgldb command

■ Directories specified in your DBSRC environment variable

Element Description

pathname The full pathname or relative pathname of a directory to be included in
the search path of the Debugger for .4gl source files.

USE

=

pathname

,

Debugger Commands 9-103

USE
A modified directory search order that you establish by a USE command only
persists for the duration of the current debugging session or until your next
USE command. If you exit to the Programmer’s Environment and then
resume debugging the same 4GL program without returning to the operating
system, the Debugger restores any source file search path that was in effect
when you ended the previous debugging session.

If you plan to reestablish the same search order for a subsequent debugging
session, you can save the current search order with a WRITE DISPLAY
command.

Examples
The following command displays your current search path in the Command
window:

use

After the following USE command, the first directory in your current search
path will be /b/low, and the second will be /m/b/high:

use /b/low, /m/b/high

After the second of the following two commands, the first directory in the
current search path will be /m/b/high, and the second will be /b/low, because
the most recent USE command takes precedence:

use /b/low
. . .

use /m/b/high

The next command replaces the current source file search path with the
current directory:

use = .

Related Command
WRITE
9-104 Guide to the IBM Informix 4GL Interactive Debugger

VARIABLE
VARIABLE
Use VARIABLE to display the declaration of a variable, including the data
type specification and the scope of reference.

If you do not specify variable, GLOBALS, or ALL, the type of each variable in
the current function is displayed, but global variables outside the current
function are ignored.

If the variable is a record, the name and data type of each component variable
are displayed.

You can qualify the scope of reference of a variable by prefixing its name with
a qualifier. Possible qualifiers include those in the following list.

If you specify GLOBALS, the Debugger only returns the types of the global
variables.

Element Description

filename The name of a file in which to write output from this command. This file
specification can also include a pathname.

Qualifier Scope

GLOBAL In all modules

MODULE.mod-name. In the specified module

FUNCTION.func-name. In the specified function

rec-name[.rec-name …]. In the record [within another record …]

GLOBALS

VARIABLE

>> filename

ALL

Variable
p. 9-16
Debugger Commands 9-105

VARIABLE
If you specify ALL, the Debugger returns the data types of all global variables
in the program and of all local variables in the current function.

The VARIABLE command can only return the declarations of variables in 4GL
functions. If a C or ESQL/C function is the current function, only the ALL and
GLOBALS options return data type information. Both options declare all the
global variables but no local variables.

If you specify an output file, the display is redirected to the file. If the file
already exists, the output is appended to it.

Examples
The following command returns the types of the local and global variables
that appear in the current function:

variable

The next command displays declarations of all the global variables in the
program:

variable global

The following command:

variable function.add_order.num_cust

displays the declaration of the variable num_cost in a function called
add_ord.

If you enter the command:

variable all >> snapshot

the Debugger saves the declarations of all global variables in the program
and any other variables of the current function in a file called snapshot. This
output is not displayed in the Command window.

Related Commands
DUMP, LET, PRINT

The data types supported by 4GL and the Debugger depend on which
Informix database server you are using. See the Informix Guide to SQL:
Reference for a list of supported data types.
9-106 Guide to the IBM Informix 4GL Interactive Debugger

VIEW
VIEW
Use VIEW to move the cursor to the Source window and optionally display a
specific 4GL function or module. You can use cursor movement commands or
Search commands to move the cursor or to scroll the current module within
the Source window. Press the Interrupt key to return to the Command
window.

If you enter the VIEW keyword without additional options, the same lines
that were displayed in the Source window when you invoked the VIEW
command remain in view.

The Debugger displays in the Source window whatever 4GL function or
module you specify in a VIEW command. If necessary, the current module is
replaced by the module that you specify or with the function that you specify.

Do not include an argument list with a function.

The VIEW command can only display a 4GL function or a 4GL module. You
cannot specify a 4GL library function, a C function, or an ESQL/C function in
a VIEW command.

If both a function and a module have the same name, the Source window
displays the function.

Examples
The following command makes the Source window your current window:

view

Element Description

function The identifier of the function to be displayed.

module The filename of the source-code module to be displayed.

VIEW

variable

module
Debugger Commands 9-107

VIEW
The following command also makes the Source window the current window:

view add_cust

It displays the source code of the function add_cust or the module of the
same name if no function exists.

Related Commands
CALL, FUNCTIONS, INTERRUPT, TURN
9-108 Guide to the IBM Informix 4GL Interactive Debugger

WHERE
WHERE
Use WHERE to display the name and arguments of each 4GL function that
was called to reach the current 4GL statement or to redirect this information
to a file. WHERE displays the current list of active functions. These are
functions that were called before the current 4GL statement was executed but
that have not yet returned. Besides the names of these functions, WHERE
displays the line and source module from which each function was called
and evaluates any parameters that were passed with it.

You can specify a filename in which to save the output from a WHERE
command. This can be outside your current directory if you prefix filename
with a pathname.

If a file called filename already exists, the WHERE command appends the
returned values without overwriting the file.

WHERE only describes programmer-defined 4GL functions. An exception
occurs, however, if WHERE appears in the command list of a tracepoint that
you set on a C function, on an ESQL/C function, or on a 4GL library function.
If the tracepoint is reached, WHERE evaluates any parameters that were
passed. It lists the function as a C or 4GL library function, rather than the
module and line number of the calling statement, and lists the active
functions.

An error message appears if you invoke the WHERE command when no 4GL
program is currently executing. You can use WHERE when execution is
suspended or after a program or function terminates abnormally.

Element Description

filename The name of a file in which to write output from this command. This file
specification can also include a pathname.

WHERE

>> filename
Debugger Commands 9-109

WHERE
Examples
The following command:

where

displays the programmer-defined functions that were executed to get to the
current 4GL statement, as well as the module and line number from which
each function was called and any parameters that it passed.

The next command saves the results of a WHERE display in a disk file called
myfile in a subdirectory called /m/tom:

where >> /m/tom/myfile

If you have not yet issued a RUN or CALL command since you began the
debugging session or since the last CLEANUP command, no function is
active. If you use WHERE when there are no active functions, the following
error message appears:

-16387: Program is not currently being executed.

Related Commands
CALL, CLEANUP, FUNCTIONS, RUN, TRACE
9-110 Guide to the IBM Informix 4GL Interactive Debugger

WRITE
WRITE
Use WRITE to save in a file the commands to establish the breakpoints,
tracepoints, aliases, directory search path specifications, or terminal display
parameters. The resulting output file can be used as an initialization file or
with a subsequent READ command to reestablish the current debugging
session.

If no other keyword appears in a WRITE command, then by default all of the
current breakpoints, tracepoints, terminal display parameters, aliases, and
the source file search path are saved in the output file.

The DISPLAY option saves in the output file commands to establish the
current values of your terminal display parameters and source file search
path. In addition, a LIST DISPLAY command is appended to the output file.
This displays the restored values in your Command window when the file is
used as an initialization file or in a READ command.

If you include the >> symbols and specify a filename, the WRITE command
assigns a name to the output file by appending the extension .4db to your
filename.

If you do not include a filename specification, WRITE assigns a default name
to the output file by appending the extension .4db to the filename of the .4gi
or .4go program that you are currently debugging.

Element Description

filename The name of a file in which to write output from this command. This file
specification can also include a pathname.

BREAK

WRITE

TRACE

DISPLAY

ALIASES >> filename
Debugger Commands 9-111

WRITE
If a .4db file with the same name as the output file already exists in the same
directory, information in the existing file is not overwritten. Instead, WRITE
appends commands to the existing file.

If you want to save the output file in a directory other than your current
directory, you must prefix filename with the complete pathname.

You can use an editor to supplement, delete, or modify the commands in an
output file. The file cannot include nonkeyword commands such as
Interrupt, Screen, or Toggle.

You can edit the output file of a WRITE command to include READ statements
that specify other .4db input files. The Debugger will display an error
message, however, if READ commands are nested more than 10 deep or if
nested READ commands attempt to access each other.

Examples
This WRITE commands saves commands in the file strtdbg.4db:

write >> strtdbg

Because no restriction is included, the output file includes commands to
establish all the current breakpoints, tracepoints, terminal display param-
eters, search paths, and aliases. The >> filename specification is unnecessary if
you want to save the commands in a file whose filename is the same as that
of the current program but with extension .4db.

The following command:

write display >> /k/leslie/myfile

saves commands to establish the current display parameters and search path
(but no ALIAS, BREAK, or TRACE commands) in a file called myfile.4db in
directory /k/leslie.

The >> symbols are usually optional unless the name of the output file could
be confused with one of the options. These symbols could be omitted in the
previous example but not in the command:

write a b >> d

which specifies that the ALIAS and BREAK commands will be saved in a file
named d.4db. If you omit the redirect symbol in this example, the Debugger
interprets d as the abbreviation of DISPLAY.
9-112 Guide to the IBM Informix 4GL Interactive Debugger

WRITE
Related Commands
ALIAS, APPLICATION DEVICE, BREAK, GROW, LIST, READ, TIMEDELAY,
TRACE, TURN, USE
Debugger Commands 9-113

A
Appendix
Environment Variables
Like INFORMIX-4GL, the Debugger makes the following
assumptions about the user’s environment:

■ The editor used is the predominant editor for the
operating system (usually vi).

■ The desired database is in the current directory.

■ If the computer is running UNIX System V, the program
that sends files to the printer is usually lp. For other
UNIX systems, the default is lpr.

■ The /tmp directory stores temporary files.

■ The 4GL and Debugger programs and their associated
files are located in the /usr/informix directory.

You can change any of these assumptions by setting one or more
environment variables.

Setting Environment Variables
Setting Environment Variables
You can set environment variables at the system prompt, in your .profile file
(if you are using the Bourne shell), or in your .cshrc or .login file (if you are
using the C shell).

If you set an environment variable at the system prompt, you will have to
assign it again the next time you log on to the system. If you set a variable in
your .profile file (Bourne shell) or in your .cshrc or .login file (C shell), UNIX
will assign it automatically every time you log on to the system.

Use the following formats to set environment variables in the C and Bourne
shells:

■ If you are using the C shell, enter the following command to set the
ABCD environment variable to value:

setenv ABCD value

■ If you are using the Bourne shell, enter the following two commands
to set the ABCD environment variable to value:

ABCD=value
export ABCD

The environment variables recognized by the Debugger (and by 4GL, except
for DBSRC) are as follows:

■ DBANSIWARN

■ DBDATE

■ DBDELIMITER

■ DBEDIT

■ DBLANG

■ DBMONEY

■ DBPATH

■ DBPRINT

■ DBSRC

■ DBTEMP

■ INFORMIXDIR

■ SQLEXEC
A-2 Guide to the IBM Informix 4GL Interactive Debugger

DBSRC
This appendix describes only the DBSRC environment variable. For infor-
mation about the other environment variables, see the INFORMIX-4GL
Reference manual.

DBSRC
This environment variable specifies directory pathnames that will be part of
the search path only during debugging sessions.

For example, if you specify:

DBSRC=/b/dawn/programs:/b/robin

then the Debugger will search for files in the programs and robin directories.
You are not required to specify a DBSRC variable.

This is the only environment variable that is not used in the same way by the
Debugger and by 4GL. When you exit from the Debugger and return to the
Programmer’s Environment or to the operating system, the pathnames
specified in DBSRC are no longer part of the search path.

See “Specifying the Source Program Search Path” on page 8-19 for more
information on specifying the order of directory search of the Debugger.

Element Description

pathname is the full pathname of a directory for .4gl source files.

setenv DBSRC pathname

;

Environment Variables A-3

B
Appendix
Calling C Functions
INFORMIX-4GL is a powerful fourth-generation language whose
commands support the database management requirements of
typical business, accounting, administrative, and information
retrieval applications. In some situations, however,
programmers with experience in the C language might want to
incorporate one or more C functions or INFORMIX-ESQL/C
functions in a 4GL program. The following list gives examples of
some of the tasks for which a C function might be appropriate:

■ Displaying operating system environment information

■ Making operating system calls

■ Using library functions (such as mathematical
functions)

■ Interfacing with a nonstandard I/O device

The Debugger supports facilities for developing 4GL programs
that include C functions. When calling a C function from a 4GL
program, you must use 4GL popping and pushing functions in
your C code when passing or returning values. See the
INFORMIX-4GL Reference for more information about C functions.

This appendix describes how to use the Debugger to examine a
4GL program that calls C functions. These procedures require
that you edit a C source file called fgiusr.c, that you compile
your 4GL functions, and that you create a modified version of the
Debugger. You can invoke this customized Debugger to examine
your application in a debugging session.

Creating, Compiling, and Debugging
Creating, Compiling, and Debugging
Figure B-1 shows the process of creating, compiling, and debugging a multi-
module 4GL program from the command line. If you compare this diagram
to Figure 8-3 on page 8-16, you will notice several differences between
debugging an ordinary 4GL program and debugging one that calls C
functions:

■ You edit file fgiusr.c to declare your C functions.

■ You invoke a program called cfgldb.

■ You create a customized Debugger.

■ You invoke the customized Debugger.

Here the rectangles represent specific commands, and the circles represent
files. If your program includes only one .4gl source module, you will not
require the cat utility to combine 4GL modules.

Figure B-1 does not show how to create a customized p-code runner. That
process is described later in this appendix and requires that you substitute
the command cfglgo for cfgldb in the procedure shown in Figure B-1. This
produces a customized runner for your users to execute the 4GL program that
calls C functions or ESQL/C functions.
B-2 Guide to the IBM Informix 4GL Interactive Debugger

Creating, Compiling, and Debugging
Figure B-1
Debugging a

Program That
Calls C FunctionsText

editor

Concatenation
utility

cfgldb

.4gl
source

file

.4gi
p-code

executable
files

.4go
p-code
object
files

P-code
compiler

fglpc

fgiusr.c
file

.c, .ec, .o
file

Customized
debugger
Calling C Functions B-3

The fgiujsr.c Structure Definition File
The fgiujsr.c Structure Definition File
The install program that is distributed with the Debugger copies a file called
fgiusr.c into directory $INFORMIXDIR/etc:

/**
* *
* INFORMIX SOFTWARE, INC. *
* *
* Title: fgiusr.c *
* Sccsid: @(#)fgiusr.c 4.2 6/26/99 10:48:37 *
* Description: *
* definition of user C functions *
* *

*/

/***
* This table is for user-defined C functions.
*
* Each initializer has the form:
*
* "name", name, nargs
*
* Variable # of arguments:
*
* set nargs to -(maximum # args)
*
* Be sure to declare name before the table and to leave the
* line of 0’s at the end of the table.
*
* Example:
*
* You want to call your C function named "mycfunc" and it
* expects 2 arguments. You must declare it:
*
* int mycfunc();
*
* and then insert an initializer for it in the table:
*
* "mycfunc", mycfunc, 2

*/

#include "fgicfunc.h"

cfunc_t usrcfuncs[] =
{
0, 0, 0
};
B-4 Guide to the IBM Informix 4GL Interactive Debugger

The fgiujsr.c Structure Definition File
The fgiusr.c file is a data file in which you must specify information about
programmer-defined C or ESQL/C functions. You must edit this file to
declare any C functions called from your 4GL program. Syntax of an edited
fgiusr.c file follows:

[/* comments */]
#include "fgicfunc.h"

int function1()[;
. . .
int functionN()]

cfunc_t usrcfuncs[] =
{
"function1", function1, [-]args1,
. . .
"functionN", functionN, [-]argsN,
0, 0, 0
};

In this example, comments are instructions that describe how to edit the
fgiusr.c file. The function1, ... , functionN specifications are the names of one
or more C functions and ESQL/C functions that are called from the 4GL
program. The args1, ... , argsN specifications correspond to the argument
numbers for each function.

The Debugger cannot be used with 4GL programs that call C functions unless
you edit this file to declare each C function or ESQL/C function. When editing
the fgiusr.c file, keep the following considerations in mind:

■ If the number of arguments of a function can vary, enter the
maximum number of arguments, prefixed by a minus sign (-).

■ The fgiusr.c file can declare your functions in any order.
Calling C Functions B-5

Example
Example
In the following example, four lines have been inserted into fgiusr.c to
describe two C functions, func1 and func2:

#include "fgicfunc.h"
int func1();
int func2();
cfunc_t usrcfuncs[] =

{
"func1", func1, 2,
"func2", func2, -3,
0, 0, 0
};

The numbers in the lines before the three zeroes specify that func1 requires
two arguments and that func2 can accept no more than three arguments.

Creating a Customized Debugger
The Debugger includes a facility by which the edited fgiusr.c file can be
compiled and linked with your C files, with ESQL/C modules, and with 4GL
libraries. This procedure also produces a customized Debugger for use with
your application that calls the C functions or ESQL/C functions. The cfgldb
command has the following structure.

cfgldb fgiusr.c c filename

. c

. o

-o newname. ec

TRACE -V
B-6 Guide to the IBM Informix 4GL Interactive Debugger

Creating a Customized Debugger
Unless you specify the -V option, this creates a customized Debugger called
newname that can execute C functions in the c filename files. These functions
must be declared in the edited fgiusr.c file.

If you specify the -V option, the version numbers of your SQL and p-code
compiler software are displayed, and the system prompt returns. No other
output is produced, and any other options are ignored.

You can give the fgiusr.c file a different name. If you have renamed the
fgiusr.c data file, you must substitute the new name in the cfgldb
command line.

You can list the names of any number of C or ESQL/C files in any order, each
separated by a blank space.

If you do not specify a name for the customized Debugger, the default name
a.out is assigned.

Element Description

cfgldb A required keyword.

fgiusr.c The name of the data file that you edited to declare your C and
ESQL/C functions.

c filename The name of a file containing one or more C functions that were
declared in fgiusr.c. Three types of c filenames are recognized by
cfgldb:

■ An object file (file extension .o)

■ A source file that contains C functions (file extension .c)

■ A source file that contains ESQL/C functions (file extension .ec)

-o newname Specifies the name of the customized Debugger.

-V The version number of the software.
Calling C Functions B-7

Examples
Examples
The following command:

cfgldb fgiusr.c usr1.c usr2.ec usr3.o -o newdb

uses an edited fgiusr.c file to create a customized Debugger named newdb
that can call C functions in the listed object file (usr3.o) as well as functions
in a C source file (usr1.c) and ESQL/C (usr2.ec) functions. These functions
must be declared in the edited fgiusr.c file.

Creating a Customized P-Code Runner
An edited fgiusr.c file can also be used to create a customized p-code runner
for runtime execution of 4GL programs that call programmer-defined
ESQL/C or C functions. The procedures to do this are outlined in this section.

Use the cfglgo facility to compile fgiusr.c and your ESQL/C or C modules to
produce a customized p-code runner. The cfglgo command file has a syntax
almost identical to that of fgldb.

cfglgo fgiusr.c c filename

. c

. o

-o newname. ec

TRACE -V
B-8 Guide to the IBM Informix 4GL Interactive Debugger

Creating a Customized P-Code Runner
Unless you specify the -V option, this creates a customized p-code runner
called newname that can execute C functions in the c filename files. These
functions must be declared in the fgiusr.c file.

If you specify the -V option, the version numbers of your SQL and p-code
compiler software are displayed, and the system prompt returns. No other
output is produced, and any other options are ignored.

You can give a different name to the fgiusr.c file. If you have renamed the
edited fgiusr.c data file, you must substitute the new name in the
command line.

You can list the names of any number of C files or ESQL/C files in any order,
each separated by a blank space.

If you do not specify a name for the customized p-code runner, the default
name a.out is assigned.

Element Description

cfglgo A required keyword.

fgiusr.c The name of the data file that you edited to declare your C and
ESQL/C functions.

c filename The name of a file containing one or more C functions that were
declared in fgiusr.c. Three types of c filenames are recognized by
cfgldb:

■ An object file (file extension .o)

■ A source file that contains C functions (file extension .c)

■ A source file that contains ESQL/C functions (file extension .ec)

-o newname Specifies the name of the customized p-code runner.

-V The version number of the software.
Calling C Functions B-9

Examples
Examples
The following command:

cfglgo fgiusr.c usr1.c usr2.ec usr3.o -o newgo

uses an edited fgiusr.c file to create a customized p-code runner named
newgo that can call C functions from three files.

Using the fgiusr.c File with Several Programs
If you are developing several 4GL programs that call C functions, one way to
use the fgiusr.c file is to create one version of the file for each application,
with each file containing only those C functions that its application calls. You
can then use the procedures described in the next section to create a different
customized Debugger for each application that calls C functions.

If you want your users to execute the applications through a p-code runner,
you can also create a customized p-code runner for each application that calls
C functions. In this case, your users must know which customized p-code
runner to use with each application program.

Alternatively, you can have one fgiusr.c file that declares and initializes all
the C functions used in all your applications. You can then create a single
modified Debugger and a single modified p-code runner that can execute all
your C functions. Your users can then use the same customized p-code
runner, regardless of the application. This is the preferred method.

Analyzing a 4GL Program That Calls C Functions
This section describes the steps that are required to analyze or run a 4GL
program that calls C functions:

1. Be sure that 4GL and the Debugger are installed.

2. Use fglpc to compile your 4GL source code files into p-code.

3. For multi-module programs, concatenate the compiled .4go modules
into a single .4gi file.

4. Edit the fgiusr.c file to declare your C functions.
B-10 Guide to the IBM Informix 4GL Interactive Debugger

Analyzing a 4GL Program That Calls C Functions
5. Use cfgldb and the edited fgiusr.c file to compile your C functions
and create a modified Debugger.

6. Invoke the modified Debugger to begin a debugging session.

7. After you are satisfied that the 4GL program is ready for your users,
use cfglgo to create a customized p-code runner.

1. Environment Requirements

Make sure that you can access the required software. You cannot use the
Debugger with a program that calls C functions unless you have 4GL and the
Debugger correctly installed on your system, following the procedures that
are described in the installation pamphlet. You must also have a C compiler.

The PATH environment variable tells the shell the correct search path for
executable 4GL programs. The INFORMIXDIR and DBPATH environment
variables are described in Appendix C, “Environment Variables,” in the
INFORMIX-4GL Reference manual. DBSRC is described in Appendix A of this
manual. These environment variables must provide access from your current
directory to all the necessary source, command, and data files.

2. Compile the 4GL Modules

If you have not already compiled your 4GL source modules, enter a
command of the following form:

fglpc module1 [module2 ...]

Here module1 and module2 are the names of your 4GL source modules. This
command produces a compiled .4go file for each .4gl source file. Chapter 8,
“The Debugging Environment,” describes the complete syntax of fglpc.

3. Concatenate the Compiled 4GL Modules

Unless your program includes only a single 4GL module, use the concate-
nation utility of your operating system to combine all the compiled modules
in a single file. For example, a command of the form:

cat module1.4go module2.4go ... > filename.4gi

produces a single .4gi p-code file.
Calling C Functions B-11

Analyzing a 4GL Program That Calls C Functions
4. Edit the fgiusr.c File

The fgiusr.c file is a C source file in which you specify information that
declares any programmer-defined C functions or ESQL/C functions that your
4GL program calls. Use a text editor to declare the name and the number of
arguments of each C function.

The first 40 or so lines of the fgiusr.c file provide instructions. The unedited
fgiusr.c file contains the following lines:

#include "fgicfunc.h"
cfunc_t usrcfuncs[] =

{
0, 0, 0
};

Suppose, for example, that you want to call three C functions named afunc1,
bfunc2, and cfunc3. Further suppose that the first requires one argument, the
second requires none, and the third requires two arguments. To modify the
fgiusr.c file so that it declares these functions, you must insert three new
declaration statements:

#include "fgicfunc.h"
int afunc1();
int bfunc2();
int cfunc3();

You must also insert lines to specify the number of arguments in each of the
three functions before the line of zeroes. After you do this, the edited fgiusr.c
file contains the following lines:

#include "fgicfunc.h"
int afunc1();
int bfunc2();
int cfunc3();
cfunc_t usrcfuncs[] =

{
"afunc1", afunc1, 1,
"bfunc2", bfunc2, 0,
"cfunc3", cfunc3, 2,
0, 0, 0
};

When you have modified the file by providing this information, save it and
return to the operating system prompt.
B-12 Guide to the IBM Informix 4GL Interactive Debugger

Analyzing a 4GL Program That Calls C Functions
5. Create a Customized Debugger

Enter a command of the form:

cfgldb fgiusr.c afunc1.c bfunc2.c cfunc3.c -o dbfilename

where afunc1.c, bfunc2.c, and cfunc3.c are the names of source files that contain
the C functions, and dbfilename is the name of the customized Debugger. The
name of the output file can include the filename of the compiled 4GL program
that you concatenated in step 3, if that helps you to remember that the
customized Debugger is intended for use with that application.

Step 5 compiles the C functions and produces a customized Debugger. This
modified version of the Debugger contains the C functions and ESQL/C
functions from the modules that you listed in the command line. You also
declared these functions in the fgiusr.c file.

6. Invoke the Debugger

You can now use the Debugger to examine the program. To begin a
debugging session, enter:

dbfilename filename

where filename is the name of the output file from step 3, and dbfilename is the
output file from step 5. The Debugger screen appears, with your 4GL
program displayed in the Source window.

The syntax of a customized Debugger is the same as the syntax of fgldb. See
“Invoking the Debugger” on page 8-11 for more information on the
command-line options of a customized Debugger.

7. Create a Customized Runner for Your Program

Modify, recompile, and reanalyze your 4GL program to eliminate any errors.
Then you can create a customized p-code runner, so your users can run the
4GL application that calls C functions.

To modify the p-code runner, you must perform the same first four steps that
are required for using the Debugger with programs that call C functions. At
step 5, however, create a customized p-code runner, rather than a Debugger,
by entering a command of the following form:

cfglgo fgiusr.c afile1.c bfile2.c ... -o fnamefglgo
Calling C Functions B-13

An Example of Calling a C Function
Here fnamefglgo is the name of the customized p-code runner, and afile1.c and
bfile2.c are the names of the source files that contain the C functions. This list
can also include object files (with extension .o) or ESQL/C files (with
extension .ec).

The procedure compiles the C functions and produces a modified version of
the p-code runner that can run your 4GL program that calls the specified C
functions. You or your users can subsequently execute your compiled 4GL
program by using the following command:

fnamefglgo filename

An Example of Calling a C Function
This section illustrates the procedure for using the Debugger with a 4GL
program that calls C functions. The numbered subheadings correspond to the
steps in the previous section. This section is designed as a tutorial. You use
demonstration files to actually work through the procedure.

1. The Software Environment
This example creates a customized Debugger to examine a 4GL application
that calls C functions. The application randomly selects an arbitrary number
of numbers from a programmer-defined range of numbers. The program
uses C functions to initialize the pseudo-random number generator, and to
select and rescale pseudo-random numbers. The user selects options from the
following menu, and the screen prompts for input after any choice except
Exit.

RANDOM: Largest_number How_many Pick Unique_flag Display Exit
Set the largest number that can be returned
B-14 Guide to the IBM Informix 4GL Interactive Debugger

1. The Software Environment
Set the PATH and INFORMIXDIR environment variables to include the
directory that contains your 4GL and Debugger command files, and your C
compiler. Be sure that DBSRC specifies pathnames to the directories that hold
the r_globals.4gl and r_main.4gl source files, and the C source files fgiusr.c
and getrand.c, unless these files are in your current directory.

Important: You can enter dbdemo to copy r_globals.4gl, r_main.4gl, getrand.c,
and other demonstration files into your current directory. Use the appropriate
operating system command to copy fgiusr.c from the INFORMIXDIR/etc directory
to your current directory.

A listing follows of the r_main.4gl module, which displays menu options
from which the user can select random numbers:

1 GLOBALS
2 "r_globals.4gl"
3
4 MAIN
5
6 LET largest = 49
7 LET howmany = 6
8 LET unique_flag = TRUE
9 CALL initrand()
10
11 MENU "RANDOM"
12 COMMAND "Largest_number"
13 "Set the largest number that can be returned"
14 CALL setlargest()
15 COMMAND "How_many" "Set how many numbers to pick"
16 CALL sethowmany()
17 COMMAND "Pick" "Generate a set of random numbers"
18 CALL getpick()
19 COMMAND "Unique_flag" "Set or Unset the unique flag"
20 CALL setunique()
21 COMMAND "Display" "Display set variables"
22 CALL dispvars()
23 COMMAND "Exit" "Exit program"
24 CLEAR SCREEN
25 EXIT PROGRAM
26 END MENU
27 END MAIN
28
29
30 FUNCTION setlargest()
31
32 CALL clear_menu()
33 WHILE TRUE
34 PROMPT "Enter Largest Number: " FOR largest
35 IF largest > 0 THEN
36 RETURN
37 END IF
38
39 DISPLAY "Number must be greater than zero"
40 END WHILE
41
42 END FUNCTION
Calling C Functions B-15

1. The Software Environment
43
44
45 FUNCTION sethowmany()
46
47 CALL clear_menu()
48 WHILE TRUE
49 PROMPT "Enter How Many Numbers to Pick: " FOR howmany
50 IF howmany > 0 AND howmany < 101 THEN
51 RETURN
52 END IF
53
54 DISPLAY "Number must be between 1 and 100"
55 END WHILE
56
57 END FUNCTION
58 FUNCTION getpick()
59
60 DEFINE i INTEGER,
61 rnum INTEGER,
62 x CHAR(1)
63
64 CALL clear_menu()
65
66 IF unique_flag = TRUE AND largest < howmany THEN
67 DISPLAY "ERROR - Cannot find ", howmany using "<<<",
68 " unique numbers less than or equal to ",
69 largest using "<<<<<<<<<<<<<<<"
70 SLEEP 3
71 RETURN
72 END IF
73
74 FOR i = 1 TO howmany
75 LET rnum = getrand(largest)
76 IF unique_flag = TRUE THEN
77 WHILE alreadypicked(rnum, i)
78 LET rnum = getrand(largest)
79 END WHILE
80 END IF
81 LET picked[i] = rnum
82 DISPLAY picked[i]
83 END FOR
84
85 PROMPT "Press any key to continue" FOR CHAR x
86
87 END FUNCTION
88
89
90 FUNCTION alreadypicked(rnumber, cnt)
91 DEFINE rnumber INTEGER,
92 cnt INTEGER,
93 i INTEGER
94
95 FOR i = 1 to cnt
96 IF picked[i] = rnumber THEN
97 RETURN TRUE
98 END IF
99 END FOR
100
101 RETURN FALSE
102
103 END FUNCTION
B-16 Guide to the IBM Informix 4GL Interactive Debugger

1. The Software Environment
104
105
106 FUNCTION setunique()
107
108 CALL clear_menu()
109 MENU "UNIQUE"
110 COMMAND "Yes" "Numbers must be unique"
111 LET unique_flag = TRUE
112 CALL mess("Unique flag is set", 23)
113 COMMAND "No" "Numbers do not have to be unique"
114 LET unique_flag = FALSE
115 CALL mess("Unique flag is no longer set", 23)
116 COMMAND "Exit" "Return to random menu"
117 Exit MENU
118 END MENU
119 END FUNCTION
120
121
122 FUNCTION mess(str, mrow)
123 DEFINE str CHAR(80),
124 mrow SMALLINT
125
126 DISPLAY " ", str CLIPPED AT mrow,1
127 SLEEP 3
128 DISPLAY "" AT mrow,1
129 END FUNCTION
130
131
132 FUNCTION dispvars()
133
134 DEFINE x CHAR(1)
135
136 CALL clear_menu()
137 display "LARGEST NUMBER: ", largest
138 display "HOW MANY NUMBERS: ", howmany
139 IF unique_flag = TRUE THEN
140 display "Unique flag is set"
141 ELSE
142 display "Unique flag is not set"
143 END IF
144
145 PROMPT "Press any key to continue" FOR CHAR x
146
147 END FUNCTION
148
149
150 FUNCTION clear_menu()
151
152 DISPLAY "" AT 1,1
153 DISPLAY "" AT 2,1
154 END FUNCTION
Calling C Functions B-17

1. The Software Environment
The r_globals.4gl Module

A listing follows of the r_globals.4gl module, which is called by the
r_main.4gl module:

1 GLOBALS
2 DEFINE largest INTEGER,
3 howmany INTEGER,
4 picked ARRAY[100] of INTEGER,
5 unique_flag INTEGER
6 END GLOBALS

The getrand.c Module

The next listing shows the getrand.c module. The first function, initrand,
uses the time of day to initialize the random number generator. The second
C function, getrand, uses the C library random number generator to select a
set of numbers and rescales the returned value to conform to specifications
supplied by the user. The first function requires no argument, and the second
requires one.

1 /*
2 * Use the time of day to initialize
3 * the random number generator.
4 */
5 initrand(numargs)
6 int numargs; /* number of 4GL parameters passed */
7 {
8 int timeofday;
9
10 /*
11 * Get the current time in seconds and use that
12 * as the seed to the random number generator.
13 */
14 timeofday = time(0);
15 srandom(timeofday);
16 return(0);
17 }
18
19 /*
20 * Get the next random number
21 */
22 getrand(numargs)
23 int numargs;/* number of 4GL parameters passed */
24 {
25 int rnumber; /* random number generated */
26 int maximum; /* largest number that
27 * can be generated */
28
29 /*
30 * Make sure the maximum number which can be
31 * generated was passed.
32 * Pop the argument off the stack into maximum.
33 */
B-18 Guide to the IBM Informix 4GL Interactive Debugger

2. Compiling the r_globals.4gl and r_main.4gl Modules
34 if (numargs != 1)
35 exit(-1);
36 popint(&maximum);
37
38 /*
39 * Get the random number, then use modulo arithmetic
40 * to make sure the number isn’t larger than maximum.
41 * NOTE: random returns a number
42 * between 0 and (2 to the 31) - 1
43 */
44 rnumber = random();
45 rnumber = (rnumber % maximum) + 1;
46
47 retint(rnumber); /* put the random number on the stack */
48 return(1);
49 }

2. Compiling the r_globals.4gl and r_main.4gl Modules
To create compiled versions of the 4GL source modules, enter the following
command at the operating system prompt:

fglpc r_globals r_main

This produces two output files, r_globals.4go and r_main.4go.

3. Concatenating r_globals.4go and r_main.4go
To combine the compiled modules, enter:

cat r_globals.4go r_main.4go > newfile.4gi

The filename of the output file (newfile) must appear later in the command
lines of step 6 and step 7.

4. Editing the fgiusr.c File
The unedited copy of the fgiusr.c file was listed earlier in this appendix. You
must insert into this file the names and the number of arguments of each C
function, namely initrand and getrand.
Calling C Functions B-19

4. Editing the fgiusr.c File
Declaring two functions requires that you use an editor to insert four new
lines near the end of the fgiusr.c file. Invoke an editor, and modify the fgiusr.c
file to conform to the following listing:

/**
* *
* INFORMIX SOFTWARE, INC. *
* *
* Title: fgiusr.c *
* Sccsid: @(#)fgiusr.c 4.2 6/26/99 10:48:37 *
* Description: *
* definition of user C functions *
* *

*/

/***
* This table is for user-defined C functions.
*
* Each initializer has the form:
*
* "name", name, nargs
*
* Variable # of arguments:
*
* set nargs to -(maximum # args)
*
* Be sure to declare name before the table and to leave the
* line of 0’s at the end of the table.
*
* Example:
*
*
You want to call your C function named "mycfunc" and it expe
cts
* 2 arguments. You must declare it:
*
* int mycfunc();
*
* and then insert an initializer for it in the table:
*
* "mycfunc", mycfunc, 2

*/
*/

#include "fgicfunc.h"
int initrand();
int getrand();
B-20 Guide to the IBM Informix 4GL Interactive Debugger

5. Compiling initrand.c and getrand.c
cfunc_t usrcfuncs[] =
{
"initrand", initrand, 0,
"getrand", getrand, 1,
0, 0, 0
};

5. Compiling initrand.c and getrand.c
This step compiles the files that contain the C functions and creates a
modified Debugger. Do this at the system prompt by entering the command:

cfgldb fgiusr.c getrand.c -o newdb

This creates a customized Debugger called newdb that can be used in a
debugging session. This customized Debugger can execute the compiled and
concatenated 4GL program file newfile.4gi that contains the output from
step 3.

6. Debugging a Program That Calls C Functions
To invoke the customized Debugger that you created in step 5, enter the
following command at the operating system prompt:

newdb newfile

The screen displays the Source and Command windows, with statements
from the source file r_main.4gl displayed in the Source window. You can
enter a RUN or CALL command to see output from this program in the Appli-
cation screen.

7. Creating a Customized P-Code Runner
If you are satisfied that this application is ready for your users, you can create
a customized p-code runner so that they can execute the program. To do so,
enter the following command at the operating system prompt:

cfglgo fgiusr.c getrand.c -o newfglgo
Calling C Functions B-21

How C Functions Affect Debugger Commands
As in step 5, the name that you assign to the output file is arbitrary. Now
you can execute the 4GL program that calls C functions by invoking the
customized p-code runner as follows:

newfglgo newfile

How C Functions Affect Debugger Commands
This section describes some differences between debugging an ordinary 4GL
program and debugging one that calls C functions. These differences have no
effect on how the Debugger interacts with 4GL statements, but they do
prevent you from displaying C functions. The most important differences are
listed here:

■ You can use CALL, CONTINUE, STEP, and RUN commands to execute
C functions, but you cannot display C source code in the Source
window. If you enter a VIEW command to display a C function, an
error message appears. To look at C source code, you must use the
Escape feature to enter an appropriate operating system command.

■ Because C functions contain no executable 4GL statements, you
cannot use the STEP INTO command to execute individual state-
ments within a C function. The 4GL statement that calls the C
function, together with the function itself, are treated as a single
statement by the STEP command.

■ You cannot set a breakpoint or tracepoint inside a C function. You
can specify the name of a C function in a TRACE command but not in
a BREAK command. You can use BREAK or TRACE, however, at the
line number of a 4GL statement that calls a C function.

■ The DUMP, PRINT, and VARIABLE commands do not describe
variables that exist only in C functions. The FUNCTIONS and WHERE
commands do not return the name of any C function. (If you trace the
name of a C function, however, a WHERE command in the tracepoint
specification shows the name of the C function, any values passed
with it, and the functions currently active.)
B-22 Guide to the IBM Informix 4GL Interactive Debugger

How C Functions Affect Debugger Commands
In general, the Debugger allows you to display source code and trace the
execution of a 4GL program up to a C function call and after a C function call,
but not inside a C function. By following the procedures in this appendix,
however, you can use Debugger commands to execute C functions and
ESQL/C functions that are called from 4GL programs.
Calling C Functions B-23

C
Appendix
Sample Programs
This appendix describes the sample programs used in this
manual to demonstrate the INFORMIX-4GL Interactive Debugger.
The customer program demonstrates basic debugging
techniques (Appendix 3, “Tracing Logic of the customer
Program,” and Chapter 4, “Analyzing a Logical Error in the
customer Program”), while the cust_order program is the basis
for advanced debugging sessions (Appendix 6, “Tracing Logic of
the cust_order Program,” and Chapter 7, “Analyzing Runtime
Errors in the cust_order Program”).

Both programs, as supplied with the Debugger, contain inten-
tional errors. This appendix documents the debugged versions of
the programs.

The customer Program
The customer Program
This section describes the customer program, a single-module program that
uses the customer form to add, retrieve, modify, and delete customer rows
from the database.

The customer program consists of the following program blocks and
functions:

GLOBALS
MAIN
show_menu
enter_row
query_data
change_data
delete_row

As explained in Chapter 4, “Analyzing a Logical Error in the customer
Program,” the original version of the customer program contains errors. This
appendix discusses the debugged version of the program.

In the program listing, some functions are annotated to help you locate
individual statements. The numbers in the listing correspond to numbered
items in the text that describes the function.

Program Listing
This section lists the debugged version of the customer program:

DATABASE stores7
GLOBALS

DEFINE
p_customer RECORD LIKE customer.*,
chosen SMALLINT

END GLOBALS
MAIN

DEFER INTERRUPT
OPEN FORM cust_form FROM "customer"
DISPLAY FORM cust_form
LET chosen = FALSE
OPTIONS MESSAGE LINE 22,

PROMPT LINE 21,
HELP FILE "custhelp.ex",
HELP KEY CONTROL-I

CALL show_menu()
MESSAGE "End program."
SLEEP 3
C-2 Guide to the IBM Informix 4GL Interactive Debugger

Program Listing
CLEAR SCREEN
END MAIN
FUNCTION show_menu()

DEFINE answer CHAR(1)
MESSAGE "Type the first letter of the option ",

"you want to select or CONTROL I for Help."
MENU "CUSTOMER"
COMMAND "Add" "Add a new customer." HELP 1

LET answer = "y"
WHILE answer = "y"

CALL enter_row()
PROMPT "Do you want to ",

"enter another row (y/n) ? "
FOR CHAR answer

END WHILE
CLEAR FORM

COMMAND "Query" "Search for a customer." HELP 2
CALL query_data()
IF chosen THEN

NEXT OPTION "Modify"
END IF

COMMAND "Modify" "Modify a customer." HELP 3
IF chosen THEN

CALL change_data()

ELSE
MESSAGE "No customer has been chosen. ",

"Use the Query option to select ",
"a customer."

NEXT OPTION "Query"
END IF

COMMAND "Delete" "Delete a customer." HELP 4
IF chosen THEN

PROMPT "Are you sure you want to ",
"delete this customer (y/n)? "
FOR CHAR answer
IF answer = "y" THEN

CALL delete_row()
LET chosen = FALSE

END IF
ELSE

MESSAGE "No customer has been chosen. ",
"Use the Query option to select ",
"a customer."

NEXT OPTION "Query"
END IF

COMMAND "Exit" "Leave the CUSTOMER menu." HELP 5
EXIT MENU
END MENU

END FUNCTION
FUNCTION enter_row()

LET int_flag = 0
MESSAGE ""
CLEAR FORM
Sample Programs C-3

Program Listing
INPUT p_customer.fname THRU p_customer.phone
FROM sc_cust.*

IF int_flag THEN
LET int_flag = FALSE
ERROR "Customer entry aborted."
RETURN

END IF
LET p_customer.customer_num = 0
INSERT INTO customer VALUES (p_customer.*)
LET p_customer.customer_num = SQLCA.SQLERRD[2]
DISPLAY p_customer.customer_num TO customer_num
MESSAGE "Row added."
SLEEP 3
MESSAGE ""

END FUNCTION
FUNCTION query_data()

DEFINE
where_clause CHAR(200),
sql_stmt CHAR(250),
answer CHAR(1),
exist SMALLINT

LET int_flag = 0
MESSAGE ""
CLEAR FORM
MESSAGE "Enter search criteria and press ESC."
SLEEP 3
MESSAGE ""
CONSTRUCT where_clause on customer.* FROM customer_num,

fname, lname, company, address1, address2, city, state,
zipcode, phone

IF int_flag THEN
LET int_flag = FALSE
ERROR "Customer query aborted"
RETURN

END IF
LET sql_stmt = "SELECT * FROM customer where ",

where_clause clipped
PREPARE ex_sel FROM sql_stmt
DECLARE q_curs CURSOR FOR ex_sel
LET exist = FALSE
LET chosen = FALSE
FOREACH q_curs INTO p_customer.*

LET exist = TRUE
DISPLAY BY NAME p_customer.*
PROMPT "Enter ’y’ to select this customer ",

"or RETURN to view next customer: "
FOR CHAR answer
IF answer = "y" THEN

LET chosen = TRUE
EXIT FOREACH

END IF
END FOREACH
IF exist = FALSE THEN

MESSAGE "No customer rows found."
C-4 Guide to the IBM Informix 4GL Interactive Debugger

The GLOBALS Statement
SLEEP 3
MESSAGE ""

ELSE
IF chosen = FALSE THEN

MESSAGE "There are no more customer rows."
SLEEP 3
MESSAGE ""
CLEAR FORM

END IF
END IF

END FUNCTION
FUNCTION change_data()

LET int_flag = 0
INPUT p_customer.fname THRU p_customer.phone

WITHOUT DEFAULTS FROM sc_cust.*
IF int_flag THEN

LET int_flag = FALSE
ERROR "Customer update aborted."
RETURN

END IF
UPDATE customer

SET customer.* = p_customer.*
WHERE customer_num = p_customer.customer_num

MESSAGE "Row updated."
SLEEP 3
MESSAGE ""

END FUNCTION
FUNCTION delete_row()

LET int_flag = 0
DELETE FROM customer WHERE customer_num =

p_customer.customer_num
CLEAR FORM
MESSAGE "Row deleted."
SLEEP 3
MESSAGE ""

END FUNCTION

The GLOBALS Statement
The GLOBALS section of the program defines two global variables:

■ p_customer, a record that contains variables corresponding to the
columns in the customer table

■ chosen, a flag indicating whether the user has selected a customer
Sample Programs C-5

The MAIN Statement
The MAIN Statement
The MAIN section of the program performs the following operations:

1. Defers interrupt signals so program execution will continue if the
user presses the Interrupt key (typically CTRL-C)

2. Opens and displays the customer form

3. Sets chosen to FALSE to indicate that no customer has yet been
selected

4. Establishes line 22 as the message line and line 21 as the prompt line,
specifies the pathname of the help file, and designates CTRL-I as the
help key

5. Calls the show_menu function, which contains the MENU statement
for the CUSTOMER menu

6. Displays a message to indicate that the program is over and clears
the screen

The show_menu Function
The show_menu function sets up the CUSTOMER menu and calls the
functions that carry out actions described by the menu options.

The show_menu function performs the following operations:

1. Displays a message to tell the user how to choose an option or
display a help message

2. Displays the menu name, menu options, and the help line for the
highlighted option, as specified in the MENU statement
C-6 Guide to the IBM Informix 4GL Interactive Debugger

The show_menu Function
3. Executes the Add COMMAND clause when the user chooses Add
from the menu

If the user presses CTRL-I while the Add option is highlighted, the
function displays help message 1.

The Add COMMAND clause performs the following operations:

a. Assigns the value y to the variable answer

b. Executes the statements in the WHILE loop because the initial
value of answer is y

c. Calls the enter_row function that allows the user to enter a row
on the customer form and then inserts the row into the customer
table

d. Prompts the user to supply another value for answer

e. If the user enters a value other than y, leaves the WHILE loop and
redisplays the menu so that the user can select another option

f. If the user enters y, executes the statements in the WHILE loop
again

4. Executes the Query COMMAND clause when the user chooses the
Query option

If the user presses CTRL-I while the Query option is highlighted, the
program displays help message 2.

The Query COMMAND clause performs the following operations:

a. Calls the query_data function so the user can query for a
customer

The value of the global variable chosen is changed to TRUE if the
user selects a customer from among the query results.

b. Highlights the Modify option if a customer has been chosen
Sample Programs C-7

The enter_row Function
5. Executes the Modify COMMAND clause when the user chooses the
Modify option

If the user presses CTRL-I while the Modify option is highlighted, the
program displays help message 3.

The Modify COMMAND clause performs the following operations:

a. If chosen is TRUE (indicating that the user has selected a
customer), the program calls the change_data function, which
allows the user to update the current row.

b. Otherwise, the program displays a message indicating that no
customer row has been chosen and highlights the Query option.

6. Executes the Delete COMMAND clause when the user selects Delete
from the menu

If the user presses CTRL-I while the Delete option is highlighted, the
program displays help message 4.

The Delete COMMAND clause performs the following operations:

a. If chosen is TRUE (indicating that the user has selected a
customer), the program asks the user if the current row should
be deleted. If the user enters y, the program calls the delete_row
function and then resets chosen to FALSE.

b. Otherwise, the program displays a message indicating that no
customer row has been chosen and highlights the Query option.

7. Executes the Exit COMMAND clause when the user selects the Exit
option

If the user presses CTRL-I while the highlight is on the Exit option, the
program displays help message 5. The Exit COMMAND clause termi-
nates the MENU statement.

The enter_row Function
The enter_row function performs the following operations:

1. Sets the int_flag global variable to 0 (FALSE) to ensure the validity of
a later interrupt test

2. Clears the message line and form
C-8 Guide to the IBM Informix 4GL Interactive Debugger

The query_data Function
3. Assigns values to all variables in the p_customer record except
p_customer.customer_num from the data entered by the user on the
screen form

4. Tests the value of the global variable int_flag

With interrupts deferred, the flag is set to nonzero when the user
presses the Interrupt key, and the program continues. If the interrupt
test is true, the program responds as follows:

a. Resets int_flag to FALSE to ensure that later interrupt tests are
valid

b. Displays the message Customer query aborted on the error
message line

c. Exits the function

5. Assigns the value 0 to p_customer.customer_num as a placeholder
for the serial value that 4GL will insert automatically

6. Inserts the data in p_customer into the customer table

7. Assigns the value in SQLCA.SQLERRD[2] to
p_customer.customer_num

SQLCA.SQLERRD[2] stores the serial value of the row that the
program just inserted into the customer table.

8. Displays the serial number for the row just added to the customer
table, along with the message Row added

The query_data Function
The query_data function selects customer rows based on a last name that the
user supplies. The function performs the following operations:

1. Sets the int_flag global variable to 0 (FALSE) to ensure the validity of
a later interrupt test

2. Clears the message line and screen form

3. Displays and then clears the message Enter search criteria and
press ESC
Sample Programs C-9

The query_data Function
4. Uses a CONSTRUCT statement to allow the user to perform a query
by example on the customer table:

CONSTRUCT where_clause on customer.* FROM customer_num,
fname, lname, company, address1, address2, city, state,
zipcode, phone

The user can now enter selection criteria in selected fields of the
customer screen record. When the user presses ESC, the selection
criteria are stored in the local variable where_clause.

5. Uses an IF statement to test the value of the global variable int_flag

With interrupts deferred, this flag is set to nonzero when the user
presses the Interrupt key, and the program continues. If the interrupt
test is true, the program does the following:

a. Resets int_flag to FALSE to ensure that later interrupt tests are
valid

b. Displays the message Customer query aborted on the error
message line

c. Exits the function

6. Concatenates where_clause to a character string that contains the
rest of the SELECT statement and assigns the result to the sql_stmt
local variable

7. Prepares an executable statement called ex_sel from the SELECT
statement stored in sql_stmt

8. Declares a cursor for a SELECT statement that retrieves all customers
that meet the user’s selection criteria

9. Initializes the local variable exist to FALSE, indicating that no rows
have yet been found

10. Sets the global variable chosen to FALSE to indicate that the user has
not yet selected a customer
C-10 Guide to the IBM Informix 4GL Interactive Debugger

The change_data Function
11. Uses a FOREACH loop to display customer information on the screen
form

The FOREACH loop performs the following operations:

a. Retrieves a customer row from the customer table and stores it
in the record p_customer

b. Assigns the value TRUE to the local variable exist to indicate that
at least one customer row has been retrieved

c. Displays the values in p_customer on the screen form

d. Asks whether the user wants to select the current customer or
view the next customer

If the user enters y in response to the prompt, the program sets
chosen to TRUE and exits the FOREACH loop.

e. Repeats steps a through d until all customer rows are processed,
or until the user enters y to choose a customer and exit the
FOREACH statement

a. Displays a message if no customer rows were found (exist is
FALSE)

12. Displays a message and clears the form if the user wanted to see
another customer (chosen is FALSE), but the program could not find
one

The change_data Function
The change_data function enables the user to change a customer row. The
program calls the change_data function only if the current value of the
chosen variable is TRUE, indicating that the user has selected a customer row
using the query_data function.

The change_data function performs the following operations:

1. Sets the int_flag global variable to 0 (FALSE) to ensure the validity of
a later interrupt test

2. Uses the INPUT statement WITHOUT DEFAULTS to assign values to
all variables in p_customer record except
p_customer.customer_num from data on the screen form
Sample Programs C-11

The delete_row Function
3. Uses an IF statement to test the value of the global variable int_flag

With interrupts deferred, this flag is set to nonzero when the user
presses the Interrupt key, and the program continues. If the interrupt
test is true, the program responds as follows:

a. Resets int_flag to FALSE to ensure that later interrupt tests are
valid

b. Displays the message Customer update aborted on the error
message line

4. Updates the row in the customer table where the value in the
customer_num column equals the value currently stored in
p_customer.customer_num

5. Displays a message indicating that the row has been updated

The delete_row Function
The delete_row function deletes the currently displayed row from the
customer table. The program calls the delete_row function only if the current
value of the chosen variable is TRUE, indicating that the user has selected a
customer row using the query_data function.

The delete_row function performs the following operations:

1. Sets the int_flag global variable to 0 (FALSE) to ensure the validity of
a later interrupt test

2. Deletes the row in the customer table where the value in the
customer_num column equals the value currently stored in
p_customer.customer_num

3. Clears the form

4. Informs the user that the row has been deleted
C-12 Guide to the IBM Informix 4GL Interactive Debugger

The cust_order Program
The cust_order Program
This section describes the cust_order program, a multi-module program that
uses the orderform form to add customer orders to the stores7 database.

The cust_order program consists of the following modules and functions.

As explained in Chapter 6, “Tracing Logic of the cust_order Program,” the
original version of the cust_order program contains fatal errors. This
appendix discusses the debugged version of the program.

Attributes, as in the following DISPLAY FORM statement, are not discussed
unless they affect the operation of the program:

DISPLAY FORM order_form
ATTRIBUTE(MAGENTA)

For information about attributes, see the INFORMIX-4GL Reference manual.

In the program listing, some functions are annotated to help you locate
individual statements. The numbers in the listing correspond to numbered
items in the text that describes the function.

Module 1 Module 2 Module 3

GLOBALS GLOBALS GLOBALS

MAIN add_order

mess insert_order

clear_menu order_total

fetch_stock item_total

query_customer renum_items

insert_items

get_stock

get_item

find_order
Sample Programs C-13

Program Listing
Program Listing
This section lists the debugged versions of all three modules in the
cust_order program.

Module 1: globals.4gl

The globals.4gl module contains the following code:

DATABASE stores7

GLOBALS
DEFINE

p_customer RECORD LIKE customer.*,
p_orders RECORD

order_num LIKE orders.order_num,
order_date LIKE orders.order_date,
po_num LIKE orders.po_num,
ship_instruct LIKE orders.ship_instruct

END RECORD,
p_items ARRAY[10] OF RECORD

item_num LIKE items.item_num,
stock_num LIKE items.stock_num,
manu_code LIKE items.manu_code,
description LIKE stock.description,
quantity LIKE items.quantity,
unit_price LIKE stock.unit_price,
total_price LIKE items.total_price

END RECORD,
p_stock ARRAY[15] OF RECORD

stock_num LIKE stock.stock_num,
manu_code LIKE manufact.manu_code,
manu_name LIKE manufact.manu_name,
description LIKE stock.description,
unit_price LIKE stock.unit_price,
unit_descr LIKE stock.unit_descr

END RECORD,
stock_cnt INTEGER

END GLOBALS
C-14 Guide to the IBM Informix 4GL Interactive Debugger

Program Listing
Module 2: main.4gl

The main.4gl module contains the following code:

GLOBALS
"globals.4gl"

MAIN

DEFER INTERRUPT

OPEN FORM order_form FROM "orderform"
DISPLAY FORM order_form

ATTRIBUTE(MAGENTA)
MENU "ORDERS"

COMMAND "Add-order"
"Enter new order to database"

CALL add_order()
COMMAND "Find-order" "Look up and display orders"

CALL find_order()
COMMAND "Exit" "Exit program and return to operating system"

CLEAR SCREEN
EXIT PROGRAM

END MENU

END MAIN

FUNCTION mess(str, mrow)
DEFINE str CHAR(80),

mrow SMALLINT

DISPLAY " ", str CLIPPED AT mrow,1
SLEEP 3
DISPLAY "" AT mrow,1

END FUNCTION

FUNCTION clear_menu()

DISPLAY "" AT 1,1
DISPLAY "" AT 2,1

END FUNCTION

FUNCTION fetch_stock()

DECLARE stock_list CURSOR FOR
SELECT stock_num, manufact.manu_code,

manu_name, description, unit_price, unit_descr
FROM stock, manufact
WHERE stock.manu_code = manufact.manu_code
ORDER BY stock_num

LET stock_cnt = 1
FOREACH stock_list INTO p_stock[stock_cnt].*

LET stock_cnt = stock_cnt + 1
IF stock_cnt > 15 THEN

EXIT FOREACH
END IF

END FOREACH
LET stock_cnt = stock_cnt - 1

END FUNCTION
Sample Programs C-15

Program Listing
FUNCTION query_customer(mrow)
DEFINE where_part CHAR(200),

query_text CHAR(250),
answer CHAR(1),
mrow, chosen, exist SMALLINT

CLEAR FORM
CALL clear_menu()
MESSAGE "Enter criteria for selection"
CONSTRUCT where_part ON customer.* FROM customer.*
MESSAGE ""
IF int_flag THEN

LET int_flag = FALSE
CLEAR FORM
ERROR "Customer query aborted" ATTRIBUTE(RED, REVERSE)
LET p_customer.customer_num = NULL
RETURN (p_customer.customer_num)

END IF
LET query_text = "select * from customer where ",

where_part CLIPPED,
"order by lname"

PREPARE statement_1 FROM query_text
DECLARE customer_set SCROLL CURSOR FOR statement_1

OPEN customer_set
FETCH FIRST customer_set INTO p_customer.*
IF status = NOTFOUND THEN

LET exist = FALSE
ELSE

LET exist = TRUE
DISPLAY BY NAME p_customer.* ATTRIBUTE(MAGENTA)
MENU "BROWSE"

COMMAND "Next" "View the next customer in the list"
FETCH NEXT customer_set INTO p_customer.*

IF status = NOTFOUND THEN
ERROR "No more customers in this direction"

ATTRIBUTE(RED, REVERSE)
FETCH LAST customer_set INTO p_customer.*

END IF
DISPLAY BY NAME p_customer.* ATTRIBUTE(MAGENTA)

COMMAND "Previous" "View the previous customer in the list"
FETCH PREVIOUS customer_set INTO p_customer.*

IF status = NOTFOUND THEN
ERROR "No more customers in this direction"

ATTRIBUTE(RED, REVERSE)
FETCH FIRST customer_set INTO p_customer.*

END IF
DISPLAY BY NAME p_customer.* ATTRIBUTE(MAGENTA)

COMMAND "First" "View the first customer in the list"
FETCH FIRST customer_set INTO p_customer.*
DISPLAY BY NAME p_customer.* ATTRIBUTE(MAGENTA)

COMMAND "Last" "View the last customer in the list"
FETCH LAST customer_set INTO p_customer.*
DISPLAY BY NAME p_customer.* ATTRIBUTE(MAGENTA)

COMMAND "Select" "Exit BROWSE selecting the current customer"
LET chosen = TRUE
EXIT MENU

COMMAND "Quit" "Quit BROWSE without selecting a customer"
C-16 Guide to the IBM Informix 4GL Interactive Debugger

Program Listing
LET chosen = FALSE
EXIT MENU

END MENU
END IF
CLOSE customer_set

CALL clear_menu()
IF NOT exist THEN

CLEAR FORM
CALL mess("No customer satisfies query", mrow)
LET p_customer.customer_num = NULL
RETURN (FALSE)

END IF
IF NOT chosen THEN

CLEAR FORM
CALL mess("No selection made", mrow)
LET p_customer.customer_num = NULL
RETURN (FALSE)

END IF
RETURN (TRUE)

END FUNCTION

Module 3: order.4gl

The order.4gl module contains the following code:

GLOBALS
"globals.4gl"

DEFINE query_stat INTEGER

FUNCTION add_order()
DEFINE pa_curr, s_curr INTEGER

LET query_stat = query_customer(2)
IF query_stat IS NULL OR query_stat = 0 THEN

RETURN
END IF
DISPLAY by name p_customer.* ATTRIBUTE(CYAN)

MESSAGE "Enter the order date, PO number and shipping instructions."
INPUT BY NAME p_orders.order_date, p_orders.po_num,

p_orders.ship_instruct
IF int_flag THEN

LET int_flag = FALSE
CLEAR FORM
ERROR "Order input aborted" ATTRIBUTE (RED, REVERSE)
RETURN

END IF
INPUT ARRAY p_items FROM s_items.*

BEFORE FIELD stock_num
MESSAGE "Press ESC to write order"
DISPLAY "Enter a stock number or press CTRL-B to scan stock list"

AT 1,1
BEFORE FIELD manu_code

MESSAGE "Press ESC to write order"
DISPLAY "" AT 1, 1
DISPLAY "Enter a manufacturer code or press CTRL-B to scan ",

"stock list" at 1, 1
Sample Programs C-17

Program Listing
BEFORE FIELD quantity
MESSAGE "Press ESC to write order"
DISPLAY "" AT 1,1
DISPLAY "Enter the item quantity" AT 1, 1
ON KEY (CONTROL-B)

IF INFIELD(stock_num) OR INFIELD(manu_code) THEN
LET pa_curr = arr_curr()
LET s_curr = scr_line()
CALL fetch_stock()
CALL get_stock() RETURNING
p_items[pa_curr].stock_num, p_items[pa_curr].manu_code,
p_items[pa_curr].description, p_items[pa_curr].unit_price

DISPLAY p_items[pa_curr].stock_num
TO s_items[s_curr].stock_num

DISPLAY p_items[pa_curr].manu_code
TO s_items[s_curr].manu_code

DISPLAY p_items[pa_curr].description
TO s_items[s_curr].description

DISPLAY p_items[pa_curr].unit_price
TO s_items[s_curr].unit_price

NEXT FIELD quantity
END IF

AFTER FIELD stock_num, manu_code
LET pa_curr = arr_curr()
IF p_items[pa_curr].stock_num IS NOT NULL

AND p_items[pa_curr].manu_code IS NOT NULL
THEN

CALL get_item()
END IF

AFTER FIELD quantity
MESSAGE ""
LET pa_curr = arr_curr()
IF p_items[pa_curr].unit_price IS NOT NULL

AND p_items[pa_curr].quantity IS NOT NULL
THEN

CALL item_total()
ELSE

ERROR "A valid stock code, manufacturer, and ",
"quantity must all be entered" ATTRIBUTE (RED, REVERSE)

NEXT FIELD stock_num
END IF

AFTER INSERT, DELETE
CALL renum_items()
CALL order_total()

AFTER ROW
CALL order_total()

END INPUT

IF int_flag THEN
LET int_flag = FALSE
CLEAR FORM
ERROR "Order input aborted" ATTRIBUTE (RED, REVERSE)
RETURN

END IF

CALL insert_order()
END FUNCTION

FUNCTION insert_order()
WHENEVER ERROR CONTINUE
BEGIN WORK
C-18 Guide to the IBM Informix 4GL Interactive Debugger

Program Listing
INSERT INTO orders (order_num, order_date, customer_num,
ship_instruct, po_num)
VALUES (0, p_orders.order_date, p_customer.customer_num,

p_orders.ship_instruct, p_orders.po_num)
IF status < 0 THEN

ROLLBACK WORK
ERROR "Unable to complete update of orders table"
ATTRIBUTE(RED, REVERSE, BLINK)
RETURN

END IF
LET p_orders.order_num = SQLCA.SQLERRD[2]
DISPLAY BY NAME p_orders.order_num

IF NOT insert_items() THEN
ROLLBACK WORK
ERROR "Unable to insert items" ATTRIBUTE(RED, REVERSE, BLINK)
RETURN

END IF
COMMIT WORK
WHENEVER ERROR STOP
CALL mess("Order added", 23)
CLEAR FORM

END FUNCTION

FUNCTION order_total()
DEFINE order_total MONEY(8),

i INTEGER
LET order_total = 0.00
FOR i = 1 TO arr_count()

IF p_items[i].total_price IS NOT NULL THEN
LET order_total = order_total + p_items[i].total_price

END IF
END FOR
LET order_total = 1.1 * order_total
DISPLAY order_total TO t_price ATTRIBUTE (GREEN)

END FUNCTION
FUNCTION item_total()

DEFINE pa_curr, sc_curr INTEGER
LET pa_curr = arr_curr()
LET sc_curr = scr_line()
LET p_items[pa_curr].total_price =

p_items[pa_curr].quantity * p_items[pa_curr].unit_price
DISPLAY p_items[pa_curr].total_price TO s_items[sc_curr].total_price

END FUNCTION

FUNCTION renum_items()
DEFINE pa_curr, pa_total, sc_curr, sc_total, k INTEGER
LET pa_curr = arr_curr()
LET pa_total = arr_count()
LET sc_curr = scr_line()
LET sc_total = 4
FOR k = pa_curr TO pa_total

LET p_items[k].item_num = k
IF sc_curr <= sc_total THEN

DISPLAY k TO s_items[sc_curr].item_num
LET sc_curr = sc_curr + 1

END IF
END FOR

END FUNCTION

FUNCTION insert_items()
DEFINE idx INTEGER
Sample Programs C-19

Program Listing
FOR idx = 1 TO arr_count()
IF p_items[idx].quantity != 0 THEN

INSERT INTO items
VALUES (p_items[idx].item_num, p_orders.order_num,

p_items[idx].stock_num, p_items[idx].manu_code,
p_items[idx].quantity, p_items[idx].total_price)

IF status < 0 THEN
RETURN (FALSE)

END IF
END IF

END FOR
RETURN (TRUE)

END FUNCTION

FUNCTION get_stock()
DEFINE idx integer
OPEN WINDOW stock_w AT 7, 3

WITH FORM "stock_sel"
ATTRIBUTE(BORDER, YELLOW)

CALL set_count(stock_cnt)
DISPLAY " Use cursor using F3, F4, and arrow keys; press ESC ",

"to select a stock item" AT 1,1
DISPLAY ARRAY p_stock TO s_stock.*
LET idx = arr_curr()
CLOSE WINDOW stock_w
RETURN p_stock[idx].stock_num, p_stock[idx].manu_code,

p_stock[idx].description, p_stock[idx].unit_price
END FUNCTION

FUNCTION get_item()
DEFINE pa_curr, sc_curr INTEGER
LET pa_curr = arr_curr()
LET sc_curr = scr_line()
SELECT description, unit_price

INTO p_items[pa_curr].description,
p_items[pa_curr].unit_price

FROM stock
WHERE stock.stock_num = p_items[pa_curr].stock_num

AND stock.manu_code = p_items[pa_curr].manu_code
IF status THEN

LET p_items[pa_curr].description = NULL
LET p_items[pa_curr].unit_price = NULL

END IF
DISPLAY p_items[pa_curr].description, p_items[pa_curr].unit_price

TO s_items[sc_curr].description, s_items[sc_curr].unit_price
IF p_items[pa_curr].quantity IS NOT NULL THEN

CALL item_total()
END IF

END FUNCTION

FUNCTION find_order()
ERROR "Function not yet implemented"
SLEEP 3
RETURN

END FUNCTION
C-20 Guide to the IBM Informix 4GL Interactive Debugger

Form Specifications
Form Specifications
This cust_order program uses two forms:

■ The orderform form lets the user query for a customer and enter a
new order for that customer.

■ The stock_sel form is displayed within a window if the user needs to
consult a stock list from the orderform form.

The orderform Form
DATABASE stores7

SCREEN
{
--

ORDER FORM
--
Customer Number:[f000] Contact Name:[f001][f002]

Company Name:[f003]
Address:[f004][f005]

City:[f006] State:[a0] Zip Code:[f007]
Telephone:[f008]

--
Order No:[f009] Order Date:[f010] PO Number:[f011]

Shipping Instructions:[f012]
--
Item No. Stock No. Code Description Quantity Price Total
[f013] [f014] [a1] [f015] [f016] [f017] [f018]
[f013] [f014] [a1] [f015] [f016] [f017] [f018]
[f013] [f014] [a1] [f015] [f016] [f017] [f018]
[f013] [f014] [a1] [f015] [f016] [f017] [f018]

Running Total including Tax and Shipping Charges:[f019]
==
}

TABLES
customer orders items stock

ATTRIBUTES
f000 = customer.customer_num;
f001 = customer.fname;
f002 = customer.lname;
f003 = customer.company;
f004 = customer.address1;
f005 = customer.address2;
f006 = customer.city;
a0 = customer.state, UPSHIFT;
f007 = customer.zipcode;
f008 = customer.phone, PICTURE = "###-###-#### XXXXX";

f009 = orders.order_num;
f010 = orders.order_date, DEFAULT = TODAY;
f011 = orders.po_num;
f012 = orders.ship_instruct;
Sample Programs C-21

Form Specifications
f013 = items.item_num, NOENTRY;
f014 = items.stock_num;
a1 = items.manu_code, UPSHIFT;
f015 = stock.description, NOENTRY;
f016 = items.quantity;
f017 = stock.unit_price, NOENTRY;
f018 = items.total_price, NOENTRY;
f019 = formonly.t_price TYPE MONEY;

INSTRUCTIONS
SCREEN RECORD s_items[4](items.item_num, items.stock_num, items.manu_code,

stock.description, items.quantity, stock.unit_price, items.total_price)

The sel_stock Form
DATABASE stores7

SCREEN
{
[f018][f019][f020][f021][f022][f023]
[f018][f019][f020][f021][f022][f023]
[f018][f019][f020][f021][f022][f023]

}

TABLES
stock

ATTRIBUTES
f018 = FORMONLY.stock_num;
f019 = FORMONLY.manu_code;
f020 = FORMONLY.manu_name;
f021 = FORMONLY.description;
f022 = FORMONLY.unit_price;
f023 = FORMONLY.unit_descr;

INSTRUCTIONS
DELIMITERS " "
SCREEN RECORD s_stock[3] (FORMONLY.stock_num THRU FORMONLY.unit_descr)
C-22 Guide to the IBM Informix 4GL Interactive Debugger

Module 1: globals.4gl
Module 1: globals.4gl
The globals file selects the stores7 database and defines the following:

■ p_customer, a program record with variables defined LIKE all
columns of the customer table

The p_customer record is used to store a customer row chosen from
the results of a query by example.

■ p_orders, a program record with variables defined LIKE selected
columns from the orders table

The p_orders record is used to store information such as order date,
purchase order (P.O.) number, and shipping instructions during
order entry.

■ p_items, a program array of 10 records with variables defined LIKE
selected columns from the items and stock tables

The p_items array is used to store information such as stock number,
quantity, and total price during order entry.

■ p_stock, a program array of 15 records with variables defined LIKE
selected columns from the manufact and stock tables

The p_stock array is used to store a stock list that is displayed within
the stock_w window on the screen form.

■ stock_cnt, an INTEGER variable used as a counter

The stock_cnt variable keeps track of the number of rows read from
the database into the p_stock array.
Sample Programs C-23

Module 2: main.4gl
Module 2: main.4gl
Module 2 contains the following program blocks and functions:

GLOBALS
MAIN
mess
clear_menu
fetch_stock
query_customer

The GLOBALS Statement
The GLOBAL statement establishes global variables from the globals.4gl file.

The MAIN Statement
The MAIN statement sets up the operating environment of the program
as follows:

1. Begins with DEFER INTERRUPT

If the user presses the Interrupt key with interrupts deferred, the
global variable int_flag (defined by 4GL) is set to nonzero and pro-
gram execution continues.

2. Opens and displays the orderform form

3. Displays the ORDERS menu, which provides the following options:

■ Add-order calls the add_order function, which allows the user
to select a customer from the customer table, to enter an order for
that customer on the orderform form, and to add the order to the
database.

■ Find-Order is not currently implemented.

■ Exit exits the ORDERS menu and the cust_order program.
C-24 Guide to the IBM Informix 4GL Interactive Debugger

The mess Function
The mess Function
The mess function displays a message, sleeps for three seconds, and clears
the message. The function accepts two arguments, displaying str (a character
string) at mrow (a message line number).

The query_customer function assigns a value to mrow.

The clear_menu Function
The clear_menu function uses two DISPLAY statements to clear the first two
screen lines.

The fetch_stock Function
The fetch_stock function is called from the add_order function if the user
needs to look up stock information during order entry. The function retrieves
information from the stock and manufact tables and stores it in the p_stock
program array (displayed later by the get_stock function).

The fetch_stock function performs the following operations:

1. Declares stock_list as a cursor for a SELECT statement to retrieve the
following information from the stock and manufact tables:

■ Stock number

■ Manufacturer code

■ Manufacturer name

■ Description

■ Unit price

■ Unit description

The results are ordered by stock number.

2. Sets the global variable stock_cnt to 1

This variable serves as a counter during the subsequent FOREACH
loop.
Sample Programs C-25

The fetch_stock Function
3. Uses a FOREACH loop to perform the query and to store the results
in the p_stock program array

This array contains the following global variables.

The FOREACH loop works as follows:

■ For each row retrieved, the value of the counter stock_cnt
increments by 1. In this way, successively retrieved rows are
stored in p_stock[stock_cnt].*, where stock_cnt is a number
from 1 to 15 (the maximum number of records the array can
store).

■ The following IF test exits the FOREACH loop when the value of
stock_cnt exceeds 15:
IF stock_cnt > 15 THEN
EXIT FOREACH
END IF

4. Uses a LET statement following the FOREACH loop to decrement the
value of the global variable stock_cnt by 1 to accurately reflect the
number of records in the p_stock array

Variable Defined LIKE

stock_num stock.stock_num

manu_code manufact.manu_code

manu_name manufact.manu_name

description stock.description

unit_price stock.unit_price

unit_descr stock.unit_descr
C-26 Guide to the IBM Informix 4GL Interactive Debugger

The query_customer Function
The query_customer Function
The query_customer function is called from the add_order function so the
user can query for customer information. The function displays a submenu
so the user can browse through the query results and choose a customer. The
selected row is stored in p_customer, a program record with global variables
defined LIKE all columns of the customer table.

The query_customer function accepts mrow (a message line number) as an
argument. The add_order function passes the value of mrow to
query_customer, which passes the value, in turn, to the mess function. The
query_customer function returns one of the following values to the calling
function (add_order) to indicate whether or not the user selects a customer:

■ If the user does select a customer, query_customer returns the value
1 (TRUE).

■ If the user does not select a customer or if no customer row satisfies
the user’s query, query_customer returns the value 0 (FALSE).

■ If the user presses the Interrupt key to abort the query,
query_customer returns NULL.

Variable Defined LIKE

customer_num customer.customer_num

fname customer.fname

lname customer.lname

company customer.company

address1 customer.address1

address2 customer.address2

city customer.city

state customer.state

zipcode customer.zipcode

phone customer.phone
Sample Programs C-27

The query_customer Function
The query_customer function performs the following operations:

1. Defines local variables

The values assigned to chosen and exist indicate whether the user’s
query retrieves at least one customer row (exist is TRUE) and
whether the user selects a row from the query results (chosen is
TRUE). Both exist and chosen must be TRUE in order for the
query_customer function to return a TRUE value.

2. Clears the orderform form and the ORDERS menu

3. Displays a message that prompts the user to query for one or more
customers

4. Uses a CONSTRUCT statement to allow the user to perform a query
by example on the customer table:

CONSTRUCT where_part ON customer.* FROM customer.*

The user can now enter selection criteria in one or more fields of the
default customer screen record. When the user presses ESC, the selec-
tion criteria are stored in the local variable where_part (equivalent to
the WHERE clause of a SELECT statement).

Variable Name Type

where_part CHAR(200)

query_text CHAR(250)

answer CHAR(1)

mrow SMALLINT

chosen SMALLINT

exist SMALLINT
C-28 Guide to the IBM Informix 4GL Interactive Debugger

The query_customer Function
5. Uses an IF statement to test the value of the global variable int_flag

With interrupts deferred, this flag is set to nonzero when the user
presses the Interrupt key, and the program continues. If the interrupt
test is true, the program performs as follows:

a. Resets int_flag to FALSE to ensure that later interrupt tests are
valid

b. Clears the form and displays the message Customer query
aborted on the error message line

c. Sets the p_customer.customer_num global variable to NULL

This clears any value retained from a previous query.

d. Exits the function, returning a null value for
p_customer.customer_num

6. Concatenates where_part to a character string that contains the rest
of the SELECT statement and assigns the result to the query_text local
variable

7. Prepares an executable statement called statement_1 from the
SELECT statement stored in query_text

The statement selects all rows from the customer table that satisfy the
user’s selection criteria and orders the results by last name.

8. Declares customer_set as a SCROLL cursor for statement_1

9. Determines the rows that satisfy the query and leaves the cursor
pointing before the first row of the active set

10. Retrieves the first row and assigns its values to the global program
record p_customer.*

11. Tests the value of the status global variable (defined by 4GL)

If the query returned no rows, status equals NOTFOUND, and a LET
statement sets the exist local variable to FALSE. If, however, the query
returned at least one row, the program performs as follows:

a. Sets the exist global variable to TRUE to indicate that the query
returned one or more rows

b. Displays the values in the p_customer program record in the
corresponding fields of the screen form

c. Displays the BROWSE menu
Sample Programs C-29

The query_customer Function
12. COMMAND clauses of the MENU statement establish the following
options:

■ Next displays the next customer row (if any) of the active set.

■ Previous displays the previous customer row (if any) of the
active set.

■ First displays the first (and possibly the only) customer row of
the active set.

■ Last displays the last (and possibly the only) customer row of the
active set.

■ Select selects the displayed customer row, sets chosen to TRUE,
and exits the menu.

■ Quit sets chosen to FALSE and exits the menu without selecting
a customer row.

Most of these options let the user browse through the active set. The
Next option, for example, consists of the following program
segment:

COMMAND "Next" "View the next customer in the list"
FETCH NEXT customer_set INTO p_customer.*

IF status = NOTFOUND THEN
ERROR "No more customers in this direction"

ATTRIBUTE(RED,REVERSE)
FETCH LAST customer_set INTO p_customer.*

END IF
DISPLAY BY NAME p_customer.* ATTRIBUTE(MAGENTA)

When the user selects the option, a FETCH statement attempts to
retrieve the next row of the active set. If the value of the status vari-
able indicates that the cursor has moved beyond the last row of the
active set, a FETCH statement returns the cursor to the last row, and
an ERROR statement displays an error message. A DISPLAY BY NAME
statement displays the row retrieved by the appropriate FETCH state-
ment on the screen. The Previous, First, and Last options work in
approximately the same way.
C-30 Guide to the IBM Informix 4GL Interactive Debugger

The query_customer Function
13. Closes the cursor and calls clear_menu to clear the menu

At this point, one of the following conditions exists:

■ The user’s query returned no rows (exist is FALSE).

■ The user quit the BROWSE menu without selecting a customer
(exist is TRUE and chosen is FALSE).

■ The user selected a customer from the BROWSE menu (exist and
chosen are TRUE).

14. If the user’s query returned no rows, the statement IF NOT exist is
TRUE, and the program performs as follows:

a. Clears the form

b. Calls the mess function, which displays the message No
customer satisfies query on the message line

c. Sets the p_customer.customer_num global variable to NULL

This clears any value retained from a previous query.

d. Exits the function and returns FALSE to the add_order function

15. If the user quit the BROWSE menu without selecting a customer, the
statement IF NOT chosen is TRUE, and the program performs as
follows:

a. Clears the form

b. Calls the mess function, which displays No selection made on
the message line

c. Sets the p_customer.customer_num global variable to NULL

This clears the value retained from the user’s query.

d. Exits the function and returns FALSE to the add_order function

16. If both of the preceding IF tests are FALSE, the user’s query returned
a row, and the user selected a row, in which case the query_customer
function then returns TRUE to the calling add_order function
Sample Programs C-31

Module 3: order.4gl
Module 3: order.4gl
Module 3 contains the following program block and functions:

GLOBALS
add_order
insert_order
order_total
item_total
renum_items
insert_items
get_stock
get_item
find_order

The GLOBALS Statement
The GLOBALS statement establishes global variables from the globals.4gl file
and defines the following module variable.

The scope of a module variable is the module within which it is defined. This
variable assumes the value returned by the query_customer function. As a
module variable, it is available to any function of the order.4gl module.

The add_order Function
The add_order function lets the user enter an order into the database. During
order entry, the function calls other functions to perform operations such as
these:

■ Select a customer from the customer table (the query_customer
function).

■ Display a stock list if the user wants to look up a stock number (the
fetch_stock and get_stock functions).

Variable Name Type

query_stat INTEGER
C-32 Guide to the IBM Informix 4GL Interactive Debugger

The add_order Function
■ Renumber the items in the program and screen arrays should the
user add or delete a row of the screen array (the renum_items
function).

■ Calculate and display an order total (the order_total function) as the
user enters order items.

The add_order function performs the following operations:

1. Defines local variables

The pa_curr and s_curr variables are used to store the values
returned by the following built-in functions:

■ arr_curr() returns the value of the current program array row.

■ scr_line() returns the value of the current screen array row.

The variables ensure corresponding values between arrays that
might contain different numbers of rows.

2. Calls the query_customer function and assigns the returned value to
the query_stat module variable

The value is TRUE if the user selected a customer from the BROWSE
menu. (See “The query_customer Function” on page C-27.)

The call to query_customer also assigns a value to mrow. (See “The
mess Function” on page C-25 and “The query_customer Function”
on page C-27.)

3. Tests the value of query_stat. If query_stat is NULL or 0 (FALSE), the
user has yet to select a customer, and a RETURN statement exits the
function

4. If query_stat is TRUE, the p_customer program record contains the
selected customer row, in which case a DISPLAY BY NAME statement
displays the stored values in the corresponding fields of the screen
form.

Variable Name Type

pa_curr INTEGER

s_curr INTEGER
Sample Programs C-33

The add_order Function
5. Displays the following message:
Enter the order date, PO number, and shipping
instructions.

6. Lets the user enter an order date, P.O. number, and shipping instruc-
tions on the orderform form:

INPUT BY NAME p_orders.order_date, p_orders.po_num,
p_orders.ship_instruct

When the user presses ESC, the values from the screen fields are
stored in the corresponding variables of the p_orders record.

7. Tests the value of the global variable int_flag

With interrupts deferred, this flag is set to nonzero when the user
presses the Interrupt key, and the program continues. If the test is
true, the function performs as follows:

a. Resets int_flag to FALSE to ensure that later interrupt tests are
valid

b. Clears the form and displays Order input aborted on the error
message line

c. Exits the function

8. Uses an INPUT ARRAY statement to assign values to the p_items
program array from data in the s_items screen array

This screen array is defined in the INSTRUCTIONS section of the
orderform specification to display the following information for up
to four items:

■ Item number

■ Stock number

■ Manufacturer code

■ Description

■ Quantity ordered

■ Unit price

■ Total price for that item
C-34 Guide to the IBM Informix 4GL Interactive Debugger

The add_order Function
The user must enter a stock number, a manufacturer code, and an
item quantity in the appropriate fields. The remaining fields are
NOENTRY fields for which the program supplies values. Input ends
when the user presses ESC to add the order or presses the Interrupt
key to abort order entry.

The clauses of an INPUT ARRAY statement can execute in any order.
They are discussed here in the order in which they appear:

■ BEFORE FIELD

When the user must enter a value, a BEFORE FIELD clause dis-
plays instructions such as these that follow:

Press ESC to write order
Enter a stock number or press CTRL-B to scan stock list

■ ON KEY

An ON KEY clause lets the user select an item from a stock list if
the user presses CTRL-B from the stock_num or manu_code field.

LET statements assign the number of the current program array
row to the pa_curr local variable and the number of the current
screen array row to the s_curr local variable. A call to
fetch_stock retrieves a stock list from the database. (For details,
see “The fetch_stock Function” on page C-25.)

A call to get_stock opens a window and displays the stock list
within the window (for details, see “The get_stock Function” on
page C-43). When the user presses ESC to select an item from the
list, get_stock returns selected values to the add_order function
where they are assigned, in turn, to the current row of the
p_items program array:

CALL get_stock() RETURNING
p_items[pa_curr].stock_num, p_items[pa_curr].manu.code,
p_items[pa_curr].description, p_items[pa_curr].unit price

DISPLAY statements display the selected stock number, manufac-
turer code, description, and unit price in the corresponding
fields of the s_items screen array.

A NEXT FIELD statement moves the cursor to the quantity screen
field so the user can enter an item quantity.
Sample Programs C-35

The add_order Function
■ AFTER FIELD

When the cursor moves out of the stock_num or manu_code
screen field, an AFTER FIELD clause checks the values of the cor-
responding program array variables. If the variables are NOT
NULL, the user has specified both a stock number and a manu-
facturer code. The program calls the get_items function to look
up and display the description and unit price of the item.

When the cursor moves out of the quantity screen field, an
AFTER FIELD clause checks the value of the unit_price and quan-
tity variables of the p_items program array.

If the variables are NOT NULL, the user has specified a stock
number, a manufacturer code, and a quantity. A call to
item_total then multiples quantity by unit price and displays the
result in the total_price screen field.

If either variable is NULL, the user has yet to specify the required
information. The program displays an error message and moves
the cursor to the stock_num field (the first field).

■ AFTER INSERT, DELETE

The AFTER INSERT, DELETE clause executes if the user inserts or
deletes a row of the screen array. In either case, the program
renumbers the items in the program array and the screen array
to ensure consecutive values in the two arrays (the renum_items
function). The program then recalculates the displayed order
total (the order_total function).

■ AFTER ROW

When the cursor moves to a new row of the screen array, the pro-
gram calls the order_total function to calculate and display a
total price for all items in the screen array.

The INPUT ARRAY statement ends when the user presses ESC to
add the order or presses the Interrupt key to cancel the order.
C-36 Guide to the IBM Informix 4GL Interactive Debugger

The insert_order Function
9. Tests the value of the int_flag global variable

With interrupts deferred, this flag is set to nonzero when the user
presses the Interrupt key, and the program continues. If the interrupt
test is true, the program performs as follows:

a. Resets int_flag to FALSE to ensure that later interrupt tests are
valid

b. Clears the form and displays the message Order input aborted
on the error message line

c. Exits the function

10. Calls the insert_order function to add the order to the database

The insert_order Function
The insert_order function is called from the add_order function to perform a
transaction that adds an order to the database. Because one order can specify
many items, an order consists of one row in the orders table and one or more
rows in the items table.

The insert_order function performs the following operations:

1. Uses a WHENEVER ERROR CONTINUE statement to ensure that an
error (status < 0) will not terminate the program

2. Begins the transaction (BEGIN WORK)

3. Inserts the following values into the orders table:
0, p_orders.order_date, p_customer.customer_num,

p_orders.ship_instruct, p_orders.po-num

In this list of values, 0 is a placeholder for the serial value 4GL will
add to the order_num column of the table.

4. Checks the value of the status global variable to make sure that the
INSERT INTO statement executed correctly

If status is a negative number, an error has occurred, and the pro-
gram performs as follows:

a. Rolls back the transaction

The database is as it was at BEGIN WORK.

b. Displays an error message

c. Exits the function
Sample Programs C-37

The insert_order Function
5. Assigns the serial number just added to the orders table (stored in
SQLCA.SQLERRD[2]) to p_orders.order_num and displays the value
on the screen

6. Calls insert_items to add the following information to the items
table for each order item:

■ Item number

■ Order number

■ Stock number

■ Manufacturer code

■ Quantity

■ Total price

If the insert_items function returns FALSE, the program performs as
follows:

a. Rolls back the transaction

The database is as it was at BEGIN WORK.)

b. Displays an error message

c. Exits the function

7. Commits the modification to the database (COMMIT WORK)

8. Issues a WHENEVER ERROR STOP statement to override the earlier
WHENEVER ERROR CONTINUE statement

9. Displays the message Order added on line 23 (mrow)

10. Clears the form
C-38 Guide to the IBM Informix 4GL Interactive Debugger

The order_total Function
The order_total Function
The order_total function is called from the add_order function to add the
values of the total_price column of the p_items array and to display the sum
on the screen form.

The order_total function performs the following operations:

1. Defines local variables

The i variable assumes the value of the current row of the p_items
program array. The order_total variable stores the sum of the values
of p_items[i].total_price, where i identifies successive rows of the
program array.

2. Assigns a starting value of 0.00 to order_total

3. Uses a FOR loop to call the arr_count function to determine the
number of rows in the p_items program array and repeats the
following sequence that number of times:

FOR i = 1 TO ARR_COUNT()
IF p_items[i].total_price IS NOT NULL THEN

LET order_total =
order_total + p_items[i].total_price

END IF
END FOR

The value of i (initially 1) increments with each repetition of the loop.

The IF statement performs as follows:

a. Checks that the value of total_price for the current row of the
program array is not NULL.

A null value plus any value is NULL.

b. Adds the value (if it exists) to the value of order_total and
assigns the sum to order_total

The value of order_total therefore increases with each non-NULL
row.

Variable Name Type

order_total MONEY(8)

i INTEGER
Sample Programs C-39

The item_total Function
4. Adjusts the value of order_total for tax and shipping

5. Displays the adjusted order total in the t_price field of the screen
array

The item_total Function
The item_total function is called from the add_order function or the get_item
function to compute and display a total price for the current item (the current
row of the p_items program array).

The item_total function performs the following operations:

1. Defines local variables

2. Assigns the values returned by the following built-in functions to the
pa_curr and sc_curr local variables:

■ arr_curr() returns the value of the current program array row.

■ scr_line() returns the value of the current screen array row.

The variables are used to ensure corresponding values between the
two arrays.

3. Multiplies unit price by quantity for the current item and assigns the
result to p_items[pa_curr].total_price, where pa_curr is the current
row of the program array

4. Displays the item total price in the total_price field of the appro-
priate screen array row

Variable Name Type

pa_curr INTEGER

sc_curr INTEGER
C-40 Guide to the IBM Informix 4GL Interactive Debugger

The renum_items Function
The renum_items Function
The renum_items function is called from the add_order function to
renumber the items in the program array and the screen array if the user adds
or deletes a row of the screen array.

The renum_items function performs the following operations:

1. Defines local variables

2. Assigns the number of the current program array row to the variable
pa_curr

3. Assigns the number of rows currently stored in the program array to
the variable pa_total

4. Assigns the number of the current screen array row to the variable
sc_curr

5. Assigns the total number of rows in the screen array to the variable
sc_total

6. Uses a FOR loop to renumber the rows in the program array from the
current row to the last row, as well as to renumber the rows in the
screen array from the current row to the last displayed row

Variable Name Type

pa_curr INTEGER

pa_total INTEGER

sc_curr INTEGER

sc_total INTEGER

k INTEGER
Sample Programs C-41

The insert_items Function
The insert_items Function
The insert_items function is called from the insert_order function to
add rows to the items table. Each row contains an order number
(p_orders.order_num) and values from the p_items program array. The
insert_items function returns a value to the calling function to indicate
whether the rows were successfully added.

The insert_items function performs the following operations:

1. Defines a local variable

The idx variable assumes the value of the current row of the p_items
program array.

2. Uses a FOR loop to call the arr_count function to determine the
number of rows in the program array and repeats the following
sequence that number of times:

FOR idx = 1 TO arr_count()
IF p_items[idx].quantity != 0 THEN
INSERT INTO items
VALUES (p_items[idx].item_num, p_orders.order_num,

p_items[idx].stock_num, p_items[idx].manu_code,
p_items[idx].quantity, p_items[idx].total_price

IF status < 0 THEN
RETURN (FALSE)

END IF
END IF

END FOR

The value of i (initially 1) increments with each repetition of the loop.

Variable Name Type

idx INTEGER
C-42 Guide to the IBM Informix 4GL Interactive Debugger

The get_stock Function
The IF statement performs as follows:

a. Checks that the current row of the p_items program array
contains a valid item quantity

The user might have entered 0 by mistake.

b. Inserts a row into the items table provided there is a valid item
quantity

c. Tests the value of the status global variable to make sure the
INSERT statement executed correctly

d. If status is a negative number, an error occurred, and the
insert_items function returns the value FALSE to the calling
function.

3. The insert_items function returns the value TRUE to the calling
function if the preceding FOR loop executes without error.

The get_stock Function
The get_stock function displays the stock list retrieved by the fetch_stock
function within a window on the screen form. When the user presses ESC to
select an item from the list, the function returns the item values in the current
row of the p_stock program array.

The get_stock function performs the following operations:

1. Defines the idx local variable, to assume the value of the current row
of the program array

2. Opens the stock_w window and displays the stock_sel form within
the window

3. Calls the built-in function set_count to set the initial value of
arr_count() to the number of rows currently stored in the program
array

This call is required before any DISPLAY ARRAY statement (step 5).

4. Displays instructions for selecting a stock item
Sample Programs C-43

The get_item Function
5. Displays the values in the p_stock program array in the corre-
sponding fields of the s_stock screen array

At this point, the user can select an item as follows:

■ Press F3, F4, or the arrow keys to scroll through the rows in the
program array.

■ Press ESC to select the current item.

6. Assigns the value returned by the arr_curr function to the idx local
variable to identify the current row of the program array

7. Closes the stock_w window

8. Exits the function, returning the values of the selected row of the
p_stock program array:
RETURN p_stock[idx].stock_num, p_stock[idx].manu_code,

p_stock[idx].description, p_stock[idx].unit_price

The get_item Function
If the user enters a stock number and manufacturer code, the get_item
function is called from the add_order function to look up and display a
description and unit price for the corresponding item. If the user has also
entered a quantity, the get_item function calls item_total to compute and
display a total item price.

The get_item function performs the following operations:

1. Defines local variables

2. Assigns the values returned by the following built-in functions to the
pa_curr and sc_curr local variables:

■ arr_curr() returns the value of the current program array row.

■ scr_line() returns the value of the current screen array row.

The variables are used to ensure corresponding values between the
two arrays.

Variable Name Type

pa_curr INTEGER

sc_curr INTEGER
C-44 Guide to the IBM Informix 4GL Interactive Debugger

The find_order Function
3. Retrieves the description and unit price of the current item from the
stock table and stores the information in the description and
unit_price variables of the p_items program array:
SELECT description, unit price

INTO p_items[pa_curr].description,
p_items[pa_curr].unit_price

FROM stock
WHERE stock.stock_num = p_items[pa_curr].stock_num

AND stock.manu_code = p_items[pa_curr].manu_code

4. Checks the value of the status global variable to make sure the
SELECT statement executed without error

If an error occurred, the program assigns null values to the
description and unit_price variables. (This clears any values
assigned by the SELECT statement.)

5. Displays the values of description and unit_price for the current
row of the p_items program array in the corresponding fields of the
s_items screen array

6. Checks the value of quantity for the current row of the p_items array

If the value is NOT NULL, the user has entered a quantity. The pro-
gram therefore calls the item_total function to calculate and display
a total item price

The find_order Function
The find_order function, intended to query the database for order infor-
mation, is currently unimplemented. If the user chooses Find-order from the
ORDERS menu, the function displays an error message.
Sample Programs C-45

D
Appendix
Notices
IBM may not offer the products, services, or features discussed
in this document in all countries. Consult your local IBM repre-
sentative for information on the products and services currently
available in your area. Any reference to an IBM product,
program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does
not infringe any IBM intellectual property right may be used
instead. However, it is the user’s responsibility to evaluate and
verify the operation of any non-IBM product, program, or
service.

IBM may have patents or pending patent applications covering
subject matter described in this document. The furnishing of this
document does not give you any license to these patents. You
can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information,
contact the IBM Intellectual Property Department in your
country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not
apply to you.

This information could include technical inaccuracies or typographical
errors. Changes are periodically made to the information herein; these
changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the
program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

IBM Corporation
J74/G4
555 Bailey Ave
P.O. Box 49023
San Jose, CA 95161-9023
U.S.A.

Such information may be available, subject to appropriate terms and condi-
tions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Program License Agreement, or any equiv-
alent agreement between us.
D-2 Guide to the IBM Informix 4GL Interactive Debugger

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environ-
ments may vary significantly. Some measurements may have been made on
development-level systems and there is no guarantee that these measure-
ments will be the same on generally available systems. Furthermore, some
measurements may have been estimated through extrapolation. Actual
results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers
of those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to
change or withdrawal without notice, and represent goals and objectives
only.

All IBM prices shown are IBM’s suggested retail prices, are current and are
subject to change without notice. Dealer prices may vary.

This information contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the
examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names
and addresses used by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language,
which illustrate programming techniques on various operating platforms.
You may copy, modify, and distribute these sample programs in any form
without payment to IBM, for the purposes of developing, using, marketing
or distributing application programs conforming to the application
programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested
under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs. You may copy, modify, and
distribute these sample programs in any form without payment to IBM for
the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.
Notices D-3

Trademarks
Each copy or any portion of these sample programs or any derivative work,
must include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived
from IBM Corp. Sample Programs. © Copyright IBM Corp. (enter the
year or years). All rights reserved.

If you are viewing this information softcopy, the photographs and color illus-
trations may not appear.

Trademarks
AIX; DB2; DB2 Universal Database; Distributed Relational Database
Architecture; NUMA-Q; OS/2, OS/390, and OS/400; IBM Informix ;
C-ISAM ; Foundation.2000TM; IBM Informix 4GL; IBM Informix

DataBlade Module; Client SDKTM; CloudscapeTM; CloudsyncTM;
IBM Informix Connect; IBM Informix Driver for JDBC; Dynamic
ConnectTM; IBM Informix Dynamic Scalable ArchitectureTM (DSA);
IBM Informix Dynamic ServerTM; IBM Informix Enterprise Gateway
Manager (Enterprise Gateway Manager); IBM Informix Extended Parallel
ServerTM; i.Financial ServicesTM; J/FoundationTM; MaxConnectTM; Object
TranslatorTM; Red Brick Decision ServerTM; IBM Informix SE;
IBM Informix SQL; InformiXMLTM; RedBack ; SystemBuilderTM; U2TM;
UniData ; UniVerse ; wintegrate are trademarks or registered trademarks
of International Business Machines Corporation.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and other
countries.

Windows, Windows NT, and Excel are either registered trademarks or trade-
marks of Microsoft Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and other countries
licensed exclusively through X/Open Company Limited.

Other company, product, and service names used in this publication may be
trademarks or service marks of others.
D-4 Guide to the IBM Informix 4GL Interactive Debugger

Error
Messages
Error Messages
An error message appears in the Command window if an error
condition is detected by the Debugger. This section lists the
Debugger error messages. It also describes how the Debugger
responds to each error, and suggests corrective actions that you
can take. If no system action is specified, the command was not
executed.

Every Debugger error message is prefixed by a negative number.
Use this error number to find the description of the error message
in the pages that follow. Debugger error messages are listed in
descending order, starting with -16300.

The error messages that appear in this section primarily refer to
improper syntax in Debugger commands rather than to errors in
your 4GL source code. If you see an error message number that is
outside the range -16399 to -16300, you can refer to its listing in
the ‘‘Error Messages’’ section near the end of the INFORMIX-4GL
Reference.

If you are using a new version of INFORMIX-4GL or the
Programmer’s Environment, you might be advised of errors that
were not flagged in earlier versions of 4GL.

Debugger Error Messages
Debugger Error Messages
-16300 Description of error: Identifier is too long.

System action: The command was not executed. If the error occurred during
a READ command or while a .4db initialization file was being executed, other
command lines of the input file might have been executed.

Corrective action: Identifiers cannot have more than 18 characters. See if you
have omitted a separator between two identifiers, or select a new identifier of
the appropriate length.

-16301 Description of error: A syntax error has occurred.

Corrective action: Check that you have not misspelled or omitted a keyword
or identifier, included an extra command argument, or placed keywords out
of sequence. See if you have omitted parentheses after a function name in a
CALL command or included them in a VIEW command. You can enter help
all to display a two-page synopsis of all the Debugger commands. Repeat
the command, correcting any syntax errors.

-16302 Description of error: An illegal character has been found in the command.

Corrective action: Characters in Debugger commands are restricted to
letters, numbers, blanks, underscores, and the special characters listed in the
section “Conventions for Command Syntax Notation” on page 9-29. You
might have pressed a key inadvertently, or you might have introduced illegal
characters when you edited a file that provided input to a READ command.

If you create or modify a .4db file with a word processing program, be sure
to invoke it in nondocument mode. Repeat the command, without including
the illegal character (which might be a nonprintable control character).

-16303 Description of error: An illegal integer has been found in the command.

System action: The LET, PRINT, or Search command was not executed.

Corrective action: Your expression or search pattern includes a numeric
string of more than 50 characters. Repeat the command, specifying a shorter
expression or search pattern.
2 Guide to the IBM Informix 4GL Interactive Debugger

Debugger Error Messages
-16304 Description of error: An illegal floating point number has been found in the
command.

System action: The LET, PRINT, or Search command was not executed.

Corrective action: Your expression or search pattern includes a floating
point numeric string of more than 50 characters or includes more than one
decimal point. Repeat the command, specifying a shorter expression or
search pattern or fewer decimal points.

-16305 Description of error: Memory allocation failed.

Corrective action: Not enough system RAM is available to execute your
command. Repeat the command at another time, when other users are
making smaller demands on system RAM.

-16306 Description of error: Found a quote for which there is no matching quote.

Corrective action: You might have omitted a quotation mark from a name or
string, or included an extraneous quotation mark. Repeat the command,
using an even number of single (') or double (") quotes.

-16307 Description of error: Quoted string is too long.

Corrective action: The maximum length of a quoted string is 256 characters.
Reduce the string to a length within this limit.

-16308 Description of error: Missing function name.

System action: The CALL command was not executed.

Corrective action: You must specify the name of a function in a CALL
command. Repeat the command, specifying the name of a function, followed
by left and right parentheses (). If the function requires arguments, include
the list of arguments within the parentheses, separating multiple arguments
by commas.
Error Messages 3

Debugger Error Messages
-16309 Description of error: Internal buffer limit exceeded.

Corrective action: Your command has too many characters. A Debugger
command can include no more than 256 characters.

If you are specifying an ALIAS, BREAK, or TRACE command that includes
many command lines within braces, you might consider using nested aliases.
This procedure can specify a function key or a short string as the equivalent
of hundreds of keystrokes, by specifying it as the alias of a list of aliases that
each represents fewer than 256 characters. It is easier to use READ commands,
rather than aliases, to enter multiple commands.

-16310 Description of error: Keyword expected.

Corrective action: You have omitted a required command option. You can
enter help all to display the names of all the Debugger commands, or read
Chapter 9, “The Debugger Commands,” for information about specific
Debugger commands. Repeat the command, supplying a valid keyword and
any other required specifications.

-16311 Description of error: Command [name] is not recognized.

Corrective action: You have misspelled the name of the command or
improperly abbreviated it. If what appears after the $ prompt in your
command window seems to be a valid command keyword, you probably
also pressed a nonprinting key. You can enter help to display the names of all
the Debugger commands. Repeat the command, using a valid form of the
keyword.

-16312 Description of error: Missing or misplaced = sign.

System action: The ALIAS or LET command was not executed.

Corrective action: The LET command always requires an equal sign (=), as
does ALIAS (unless you specify the * option). Repeat the command, making
sure that you use the equal sign in the appropriate place.
4 Guide to the IBM Informix 4GL Interactive Debugger

Debugger Error Messages
-16314 Description of error: Missing filename.

System action: The Debugger was not loaded, or the DUMP, PRINT, READ,
TRACE, or VARIABLE command was not executed.

Corrective action: If the Debugger is already loaded, you have not specified
a filename after a READ command or after a command to redirect output to a
file. Repeat the command, specifying the name of an input or output file.

If you were at the system prompt, you have used the -f command-line option
to invoke the Debugger, but you have not specified the name of an initial-
ization file. Repeat the command, but this time either omit the -f or specify
the name of a .4db initialization file after the -f.

-16315 Description of error: Missing).

Corrective action: You have either omitted a right parenthesis from a
command argument, or you have included an extraneous left parenthesis.
Repeat the command, making sure to include an even number of
parentheses.

-16316 Description of error: A small integer is expected.

System action: The GROW command was not executed.

Corrective action: You must supply a positive or negative integer as an
argument of a GROW command. Repeat the command, specifying the
number of lines to be added to the size of the window. The sum of this integer
and the current size must be in the range from 1 to (L - 6), where L is the
number of lines that your terminal can display (usually 24).

-16317 Description of error: Program variable name expected.

System action: The LET command was not executed.

Corrective action: A LET command requires three arguments:

■ The identifier of a program variable

■ An equal sign (=)

■ An expression whose value is assigned to the variable

You omitted the first argument. Repeat the command, supplying appropriate
arguments.
Error Messages 5

Debugger Error Messages
-16318 Description of error: Positive number or name expected.

System action: The ENABLE, DISABLE, NOBREAK, or NOTRACE command
was not executed.

Corrective action: The ENABLE, DISABLE, NOBREAK, and NOTRACE
commands all require an argument. This can be a breakpoint or tracepoint
name, reference number, function name, or the ALL option. If the argument
that you entered in the Command window looks valid, you might have also
pressed a nonprinting character. Repeat the command, supplying an appro-
priate argument.

-16321 Description of error: Alias [name] is an existing command keyword.

System action: The ALIAS command was not executed.

Corrective action: The name of an alias cannot be the complete form of a
Debugger command keyword. (You are allowed, however, to assign an
abbreviated form of a command keyword as an alias.) Repeat the command,
this time specifying a different alias.

-16322 Description of error: Missing directory list.

System action: The Debugger was not loaded.

Corrective action: You have used the -I command-line option to invoke the
Debugger, but you have not specified a source file search path. Repeat the
command, but this time either omit the -I or specify the name of a search path
after the -I.

-16324 Description of error: User cannot specify more than one filename.

System action: The Debugger was not loaded.

Corrective action: You can only use the -f option to specify one initialization
file in a command line. Repeat the command but with no more than one -f
filename specification, where filename is the name of a .4db file. After you have
invoked the Debugger, you can use READ commands to execute additional
.4db files.
6 Guide to the IBM Informix 4GL Interactive Debugger

Debugger Error Messages
-16325 Description of error: Missing or extra parameter.

System action: The Debugger was not loaded.

Corrective action: You have omitted or repeated the -I or -f symbols in a
command line. Repeat the command, following the syntax of the fgldb
command (described in “Invoking the Debugger” on page 8-11).

-16326 Description of error: Missing program name.

System action: The Debugger was not loaded.

Corrective action: If you invoke the Debugger at the system prompt, you
must include as an argument the name of a compiled 4GL program (or else
the symbols -V). Repeat the command, this time specifying the name of a
compiled 4GL program.

-16327 Description of error: Cannot locate file [filename].

System action: The READ or VIEW command was not executed, or the Source
window might be empty.

Corrective action: You might have omitted or misspelled the filename of a
.4db input file (either in a READ command or after the -f option of a command
line) or the filename or pathname of a .4gl source file in a VIEW command or
in a command line.

If the input file is not in your current directory, you must prefix its name with
a pathname or add its directory to the source file search path with a USE
command. Then repeat the command, supplying a valid file specification.

-16329 Description of error: Pathname too long.

Corrective action: The Debugger will accept pathnames of up to 70 total
characters. Repeat the command, specifying a shorter pathname.
Error Messages 7

Debugger Error Messages
-16330 Description of error: Cannot open file [filename] for reading.

System action: The READ or VIEW command was not executed, or the
Debugger was invoked without executing the commands in the .4db file that
you specified after the -f option of a command line.

Corrective action: Make sure that you specified the correct filename in your
READ or VIEW command, or after the -f option when you invoked the
Debugger at the system prompt. If the name was correct, the file might be
damaged or read protected. If you do not have permission to read it, refer to
the discussion of access privileges in your operating system documentation,
or contact your system administrator.

-16331 Description of error: Too many recursive aliases.

System action: The ALIAS command was not executed.

Corrective action: In some debugging tasks, aliases that reference other
aliases can save time or circumvent limits on the number of characters in a
Debugger command line. For example, you can specify alias1 to be a
substring of alias2, which can be a substring of alias3 and so forth up to
alias5.

You cannot, however, specify more than five levels of aliases between your
keystrokes and the fully expanded commands that they alias. Repeat the
command, using fewer levels of aliases.

-16334 Description of error: Internal error—null keyword encountered.

Corrective action: Please notify the Informix Technical Support
Department.
8 Guide to the IBM Informix 4GL Interactive Debugger

Debugger Error Messages
-16335 Description of error: Window can not be adjusted by number of lines
specified.

System action: The GROW command was not executed.

Corrective action: The minimum number of lines in the Source window or
in the Command window is 1, not counting the Source window line that
displays the current module name. On a standard 24-line terminal, the
maximum number of lines in either window is 18 or (L-6) for nonstandard
terminals with L lines.

The argument of a GROW command is not the new window size but the
increment to the current window size. If you want to change the size of a
window in the Debugger screen, enter a GROW command to produce
window sizes within this range.

-16337 Description of error: No previous search pattern.

System action: The Search command was not executed.

Corrective action: You cannot enter a Search command without specifying a
search pattern, unless earlier in the same debugging session you specified a
search pattern. Repeat the command, specifying a valid search pattern.

-16338 Description of error: Cannot continue execution.

System action: The STEP or CONTINUE command was not executed.

Corrective action: You cannot invoke CONTINUE or STEP commands unless
a 4GL program has begun (but not terminated) execution. If you have not
begun execution, or if your application has terminated normally or by a fatal
error, use CALL or RUN. After execution begins, you must then suspend
execution by a breakpoint or by an Interrupt command before you can invoke
CONTINUE or STEP. See also the section “Active Functions and Variables” on
page 9-20.
Error Messages 9

Debugger Error Messages
-16339 Description of error: Break or trace name [name] is not unique.

System action: The BREAK or TRACE command was not executed.

Corrective action: A name that you assign to a breakpoint or tracepoint in a
BREAK or TRACE command cannot duplicate the name of any existing
reference point (including disabled breakpoints or tracepoints). This message
will also appear after a READ command that sets a named breakpoint or
tracepoint, if you read the same input file twice. Repeat the command, substi-
tuting a unique name or no name.

-16340 Description of error: Invalid backslash encountered.

Corrective action: Your command includes a backslash symbol that cannot
be interpreted as a command-line continuation symbol. Repeat the command
without invalid backslashes.

-16341 Description of error: Line number [line-no] not in specified module.

System action: The BREAK or TRACE command was not executed.

Corrective action: Your BREAK or TRACE command cannot specify a line
number that is greater than the line number of the last executable statement
in the specified module. If you specified no module name, the line number
cannot be greater than the last executable statement in your current module.
You can use a VIEW command to display a 4GL source module, and then enter
$ to determine the number of lines in the module.

Check to see if you have specified the correct module and line number.
Repeat the command, specifying a valid line number or module name.

-16342 Description of error: Internal error—cannot set breakpoint.

System action: The BREAK command was not executed.

Corrective action: Please notify the Informix Technical Support
Department.
10 Guide to the IBM Informix 4GL Interactive Debugger

Debugger Error Messages
-16343 Description of error: Invalid module name [name] specified.

System action: The BREAK, TRACE, or VIEW command was not executed.

Corrective action: You have specified a module or function that is not part
of the current 4GL program. Check to see if you have misspelled the name or
if you are confusing the names of modules or functions from different
programs. Repeat the command, specifying a valid module name or function
name.

-16344 Description of error: Invalid function name [name] specified.

System action: The BREAK or TRACE command was not executed.

Corrective action: You have specified a function that is not part of the
current 4GL program. Check to see if you have misspelled the name, or if you
are confusing the names of functions from different programs, or if you
neglected to compile and concatenate a program module that contains the
function. Repeat the command, specifying the name of a function in the
current 4GL program.

-16345 Description of error: Cannot set breakpoint in a 4GL library function or user
C function.

System action: The BREAK command was not executed.

Corrective action: You can only set a breakpoint at a 4GL function, not at a C
function or ESQL/C function. If you want to suspend program execution
when a C function is called, set a breakpoint by specifying the line number of
the 4GL statement that calls the C function, rather than specifying the name
of the function. See Appendix B, “Calling C Functions,” for more information
about C functions.
Error Messages 11

Debugger Error Messages
-16346 Description of error: Cannot open output file [filename].

System action: The DUMP, PRINT, TRACE, VARIABLE, or WRITE command
was not executed.

Corrective action: See if the output file already exists but is damaged or
write-protected. See if you have permission to write in the specified directory
(or in the current directory if you specified no pathname). If you do not have
write permission to create or modify the output file, refer to the discussion of
access privileges in your operating system documentation, or contact your
system administrator.

If you already have write permission in the current directory, make sure that
the output filename that you supplied does not end in a slash symbol that
your operating system interprets as a pathname, rather than a filename.
Repeat the command, specifying a valid name for your output file or speci-
fying a pathname to a directory where you have write permission.

-16347 Description of error: Invalid breakpoint or tracepoint number [reference
number] specified.

System action: The DISABLE, ENABLE, NOBREAK, or NOTRACE command
was not executed.

Corrective action: You cannot specify a reference number in an ENABLE,
DISABLE, NOBREAK, or NOTRACE command with a zero or negative value or
with a value for which no corresponding breakpoint or tracepoint currently
exists. (You can enter list break trace to display your current reference
numbers.) Repeat the command, using a valid reference number.

-16348 Description of error: Breakpoint or tracepoint [name] is not active.

System action: The DISABLE command was not executed.

Corrective action: You cannot use a DISABLE command to deactivate a
breakpoint or tracepoint that is already disabled. No action is necessary,
unless you had meant to ENABLE a breakpoint or tracepoint, or to DISABLE a
different point. Enter list break trace to display your current breakpoints
and tracepoints.
12 Guide to the IBM Informix 4GL Interactive Debugger

Debugger Error Messages
-16349 Description of error: Use NOBREAK for breakpoints and NOTRACE for
tracepoints.

System action: The NOBREAK or NOTRACE command was not executed.

Corrective action: Do not specify the name or reference number of a
tracepoint in a NOBREAK command, and do not specify the name or reference
number of a breakpoint in a NOTRACE command. Invoke the appropriate
command.

-16350 Description of error: Breakpoint/tracepoint already disabled/enabled or
can not be determined.

System action: The DISABLE or ENABLE command was not executed.

Corrective action: The Debugger cannot find any corresponding break-
points or tracepoints on which to carry out your ENABLE or DISABLE
command. Enter list break trace to display all your current reference
points.

-16351 Description of error: Variable [name] could not be located.

Corrective action: You cannot reference a variable that appears only in a
C function. For 4GL variables, make sure that you correctly entered the
variable name. If the variable is not in the current function or module, you
must qualify its name. See the “Scope of Reference” on page 9-16 for more
information.

-16352 Description of error: File [filename] has been modified. (.4gl is newer
than .4go)

System action: The command was executed, but line numbers listed in the
Source window might not correspond to the statements of the compiled
program.

Corrective action: If you change the source code in a .4gl file, you must use
the p-code compiler (at the system prompt or from within the Programmer’s
Environment) to recompile a corresponding .4go file. If your program
includes several modules, you must also concatenate the compiled modules
before you can use the Debugger on the program. Check to see if files with
both .4go and .4gi extensions of the same filename exist. Even if your .4go file
is the appropriate recompiled version, the Debugger will attempt to interpret
the .4gi version first.
Error Messages 13

Debugger Error Messages
-16353 Description of error: Executable command is invalid when executing trace-
point commands.

System action: The TRACE command was executed, but the embedded
CALL, CONTINUE, RUN, or STEP command was not.

Corrective action: The list of command lines in your TRACE command
includes a CALL, CONTINUE, RUN, or STEP command. The Debugger does
not allow any of these four program execution commands to appear in the
command list of a TRACE command. Repeat the TRACE command, excluding
from its command list any invalid program execution command.

-16354 Description of error: Function [name] not found.

System action: The CALL command was not executed.

Corrective action: You have specified a function that is not part of the
current 4GL program. Check to see if you have misspelled the name, or if you
are confusing the names of functions from different programs. Make sure
that your 4GL source code specifies and calls the function that you want to
execute. Repeat the command, specifying a valid function name.

-16355 Description of error: Function [name] requires parameters.

System action: The CALL command was not executed.

Corrective action: The required argument of a CALL command is a function
name, followed by parentheses, with a list of any arguments within the
parentheses. If you are not sure what parameters should be passed to the
function, you can use a VIEW command to display its source code. Repeat the
command, specifying appropriate arguments.

-16356 Description of error: Too many parameters passed to function [name].

System action: The CALL command was not executed.

Corrective action: Your argument list in a CALL command includes too
many parameters. If you are not sure how many parameters should be
passed to the function, you can use a VIEW command to display the source
code of the function. Repeat the command, specifying the appropriate
number of arguments in parentheses after the function name.
14 Guide to the IBM Informix 4GL Interactive Debugger

Debugger Error Messages
-16358 Description of error: Variable name expected.

System action: The LET command was not executed.

Corrective action: A LET command requires as its first argument a variable
name. Do not put quotes around a variable name. Repeat the command,
specifying the name of a program variable.

-16359 Description of error: Cannot assign values to records; assignments must be
to record members.

System action: The LET command was not executed.

Corrective action: A LET command can assign a value to a member of a
record but not to the whole record. Repeat the command, specifying the
name of a variable within the record.

-16360 Description of error: Cannot assign values to arrays; assignments must be
to array elements.

System action: The LET command was not executed.

Corrective action: A LET command can assign a value to an element of an
array but not to the whole array. Repeat the command, specifying an element
within the array. Enter help let to see an example.

-16362 Description of error: No current function.

System action: The DUMP command was not executed.

Corrective action: There is no current 4GL function if you have not yet
invoked a RUN or CALL command. Even after RUN or CALL, there is no
current function if execution terminated normally rather than being stopped
by a breakpoint, by an Interrupt or STEP command, or by a fatal error. Use
RUN or CALL to begin or restart program execution.
Error Messages 15

Debugger Error Messages
-16363 Description of error: Variable in function [name] is not active.

System action: The CALL, LET, or PRINT command was not executed.

Corrective action: You have referenced a variable whose value is assigned
by a function that has not yet been called or by a function that has already
returned. A LET or PRINT command can only reference active variables. A
variable named as an argument of a CALL command must be a global
variable or a nonglobal variable in an active function (the functions listed by
a WHERE command).

If a CALL command requires arguments, you must substitute a constant for
the name of any variable that is neither active nor global. See the section
“Active Functions and Variables” on page 9-20.

-16364 Description of error: Unknown option [name].

System action: The TURN command was not executed.

Corrective action: The Debugger cannot identify an argument of your
command. You probably used an invalid option or abbreviation. Repeat the
command, specifying a valid option. Entering help turn displays the
options of TURN.

-16365 Description of error: Breakpoint or tracepoint [name] is already active.

System action: The ENABLE command was not executed.

Corrective action: The ENABLE command has no effect on breakpoints or
tracepoints that are already enabled. Check whether you have specified the
correct name or reference number. If these are correct, enter list break
trace or search the command buffer to see if a prior DISABLE command
deactivated the wrong breakpoint or tracepoint. If necessary, invoke appro-
priate ENABLE or DISABLE commands.

-16366 Description of error: Error occurred while trying to write to a file.

System action: Not all the output from the command was written to the
output file.

Corrective action: Either you experienced a hardware error with your hard
disk, or your file system is full. Use the Escape feature to display the
remaining storage capacity of your current drive, and contact your system
administrator.
16 Guide to the IBM Informix 4GL Interactive Debugger

Debugger Error Messages
-16367 Description of error: Need to specify a specific record member or array
element.

Corrective action: You cannot use the name of an array as an argument of a
CALL command. You cannot set a breakpoint or tracepoint on an array or
record, or include the name of a record or of an array, in an expression. Repeat
the command, specifying a member of the record or an element in the array.

-16368 Description of error: Expression contains variables from different functions.

System action: The BREAK, LET, or PRINT command was not executed.

Corrective action: Do not use variables from multiple functions in the same
expression. If you need to know the value of such an expression, you must
use PRINT to evaluate the variables from each function separately. Then enter
these values as constants in the BREAK, LET, or PRINT command, rather than
the names of the variables.

-16369 Description of error: Cannot initialize application device [device-name].

System action: The APPLICATION DEVICE command was not executed.

Corrective action: You must specify the name of another terminal that has
the same termcap or terminfo entries as the terminal from which you
invoked the Debugger. The second terminal must be logged in by your
account name. Repeat the command, specifying a valid device.

-16370 Description of error: No application device specified.

System action: The APPLICATION DEVICE command was not executed.

Corrective action: You must specify the name of another terminal that has
the same termcap or terminfo entries as the terminal from which you
invoked the Debugger. Enter tty from the terminal that you want to use as
your application device. Its screen will display its terminal pathname.

Repeat the APPLICATION DEVICE command, specifying an appropriate
terminal device name. The device name must not be the name of the device
from which you invoked the Debugger.
Error Messages 17

Debugger Error Messages
-16371 Description of error: Read file not specified.

System action: The READ command was not executed.

Corrective action: You must specify the name of a .4db file in a READ
command. Repeat the command, specifying a filename.

-16372 Description of error: Variable or expression expected.

System action: The PRINT command was not executed.

Corrective action: You must identify what you want the Debugger to
display in a PRINT command. Repeat the command, specifying the name of
a program variable, record, array, or expression.

-16373 Description of error: Cannot print or make assignments before execution
has started.

System action: The DUMP, LET, or PRINT command was not executed.

Corrective action: You cannot use a LET command to assign a value to a
variable or a DUMP or PRINT command to display information about a
variable or function until after execution starts. The same restriction applies
after execution terminates normally or after a CLEANUP command.

Invoke the RUN or CALL command to begin execution, and then repeat the
command. (It might be necessary to set a breakpoint or press the Interrupt
key to prevent normal termination.)

-16374 Description of error: Break command contains IF without having a
condition specified.

System action: The BREAK command was not executed.

Corrective action: The IF keyword in a BREAK command must be followed
by an expression. The breakpoint has no effect while the condition is FALSE
(0). Repeat the command without IF or with IF and a condition.

-16375 Description of error: Cannot view C-library function [name].

System action: The VIEW command was not executed.

Corrective action: The VIEW command cannot display the source code of
C functions or ESQL/C functions. To examine C source code, you must use
the Escape feature to invoke an operating system command that displays the
C source file.
18 Guide to the IBM Informix 4GL Interactive Debugger

Debugger Error Messages
-16376 Description of error: Break or trace name [name] does not begin with an
alpha character.

System action: The BREAK or TRACE command was not executed.

Corrective action: The first character in the name of a breakpoint or
tracepoint must be a letter. The subsequent characters can be letters,
numbers, or underscores (_). The name must be enclosed between single (')
or double (") quotes. Repeat the command, specifying a valid name and
enclosing the name in single or double quotes.

-16377 Description of error: Cannot retrieve values of global variables before
execution begins.

System action: The PRINT command was not executed.

Corrective action: A PRINT command cannot display the value of a global
program variable until after execution commences. Invoke the RUN or CALL
command to begin execution, and then repeat the PRINT command. In this
situation, you can specify constants or the names of global variables as
arguments of CALL. (It might be necessary to set a breakpoint or to press the
Interrupt key to suspend program execution before normal termination.)

-16378 Description of error: A small positive integer is expected.

System action: The TIMEDELAY command was not executed.

Corrective action: You cannot enter a TIMEDELAY command without an
argument or with a negative number as the argument. Repeat the command,
specifying zero or a positive integer as the number of seconds delay in the
Source window or Command window.

-16381 Description of error: Cannot set breakpoint or tracepoint—no current
module.

System action: The BREAK or TRACE command was not executed.

Corrective action: You cannot set a breakpoint or tracepoint without refer-
encing a module or function unless there is a program module in the Source
window. You have probably ignored an error message that appeared when
you were unable to load a 4GL source file.
Error Messages 19

Debugger Error Messages
-16382 Description of error: Command file [filename] is currently being processed.

System action: A READ command invoked either by a READ command or by
an initialization file was not executed.

Corrective action: You have used a READ command, nested in an initial-
ization file or in the input file of a READ command, that refers to one of the
following:

■ To itself

■ To a previous READ command input file

■ To a .4db initialization file that has not yet completed executing all
of its commands

Avoid nesting READ commands, or make sure that no .4db file contains a
READ command that creates an infinite loop.

-16383 Description of error: Number of nested READ commands limit exceeded.

System action: A nested READ command was not executed.

Corrective action: You invoked a READ command that invokes another
READ command, that invokes another, and so forth for more than 10 nested
READ commands. You cannot nest more than 10 READ commands. Simplify
your .4db files.

-16384 Description of error: Line in .4db file exceeds maximum length.

System action: The READ command was not executed.

Corrective action: You cannot have more than 256 characters in a single
Debugger command line. If you are using semicolons as command
separators, break the line instead into separate commands, and repeat the
commands.

You should avoid Debugger commands that have more characters in a single
line than your screen or list device can display. Use the backslash continu-
ation symbol to divide long command lines into shorter segments, or use
aliases.
20 Guide to the IBM Informix 4GL Interactive Debugger

Debugger Error Messages
-16385 Description of error: Call to function [name] failed.

System action: The CALL command was not executed.

Corrective action: The logic in your 4GL or C language function might be
defective or might not support the argument list that you specified in a CALL
command. Use the VIEW command to examine the source code of a 4GL
function. Use the Escape feature to examine the source file of a C function.

-16386 Description of error: Search string exceeds maximum length.

System action: The Search command was not executed.

Corrective action: The maximum length of a search pattern specification
whose first character is a quote (") is 80 characters, or a maximum length of
50 after any other first character. See if you unintentionally pressed a Search
command key (? or /). Repeat the Search command but specify a shorter
pattern.

-16387 Description of error: Program is not currently being executed.

System action: The WHERE command was not executed.

Corrective action: A WHERE command cannot display your active functions
until after execution commences. Invoke the RUN or CALL command to begin
execution, and then repeat the command. (It might first be necessary to set a
breakpoint to suspend execution before normal termination.) See the section
“Active Functions and Variables” on page 9-20.

-16388 Description of error: Cannot create Debugger window.

Corrective action: You are probably out of memory. Repeat the command at
another time, when other users are making smaller demands on system RAM.

-16389 Description of error: Filename exceeds maximum length.

Corrective action: A filename cannot exceed 80 characters. Repeat the
command, specifying a shorter filename.

-16390 Description of error: Error occurred while reading file [filename].

Corrective action: The Debugger encountered an error while trying to read
a 4GL source file. Check to make sure that the file still exists and that it is not
corrupted.
Error Messages 21

Debugger Error Messages
-16391 Description of error: Internal error—attempt to highlight invalid line
number.

Corrective action: Repeat the command. If the same error message is
repeated, please notify the Informix Technical Support Department.

-16392 Description of error: No database name specified.

System action: The DATABASE command was not executed.

Corrective action: The DATABASE command requires as its argument the
name of a database. Repeat the command, specifying the name of a database
that can be accessed by the Debugger.

-16393 Description of error: Expression or variable contains invalid substring.

System action: The BREAK, LET, or PRINT command was not executed.

Corrective action: The Debugger cannot interpret an expression or variable
in your command. To specify substrings of a character string, you must enter
the name of the character variable, followed by two numbers, separated by
commas, and enclosed within a pair of square brackets, as in the expression:

charstring[n1,n2]

Here charstring must be of type CHAR(n), where n > 1, and n1 and n2 must
have positive integer values between 1 and n inclusive.

This error message appears if n2 is larger than n, or if n1 is greater than n2.
Repeat the command, supplying valid specifications of the substring.

-16394 Description of error: Cannot access the help messages.

System action: The HELP command was not executed.

Corrective action: The Debugger help messages are in a file called fgldb.iem
that the INSTALL program copies to directory INFORMIXDIR/msg. This file
has been damaged, deleted, or read protected, or is unavailable to you for
some other reason. Ask your system administrator to restore your access to
this file.
22 Guide to the IBM Informix 4GL Interactive Debugger

Index

Index
A
-a command-line option 8-15
Abbreviating keywords 1-18, 2-12,

8-24, 9-24, 9-42, 9-65, 9-96
Abnormal termination 9-21, 9-47
Active

breakpoints 8-36, 9-42
functions 9-21, 9-109
tracepoints 8-39, 9-97
variables 8-36, 9-22

add_order function of cust_order
program C-32

ALIAS command
purpose 2-32, 8-21, 8-41, 8-45,

9-14
related commands 9-14, 9-37
syntax 9-35
usage 8-42, 9-36
with command separator (;)

symbol 9-34, 9-36
with continuation (\)

symbol 9-34, 9-36
with multiple command line ({ })

symbols 9-36
Aliases

default 2-32, 8-21, 8-45, 9-36
saving with WRITE 8-42, 9-111

ALIASES option of WRITE
command 8-43

ALL option
of DISABLE command 7-5
of DUMP command 3-17, 5-24,

8-34, 9-23
of HELP command 8-24, 9-65
of NOBREAK command 9-74
of NOTRACE command 9-76

of VARIABLE command 7-19,
9-106

ANSI compliance
icon Intro-10

APPLICATION DEVICE command
in output of LIST command 8-41,

9-73
purpose 8-32, 9-11
related commands 9-11, 9-39
syntax 9-38
usage 9-39, 9-84
usage with Toggle command 9-93

Application program
compiling 2-10, 5-17, 8-8, 8-14,

9-18
defining in Programmer’s

Environment 5-15
function key assignments 1-19,

8-21
interrupting 1-7, 3-18, 9-10, 9-60,

9-67
keyboard input 8-24, 9-38
screen output 1-5, 8-24, 9-38, 9-84,

9-93, 9-100
source code 8-24, 8-29, 9-11
specifying 8-11, 8-17
testing signal-handling 9-49

Application screen
command set 9-33
copying to a file 9-10, 9-84
cursor movement 9-9
displaying 2-21, 2-25, 6-20, 8-24,

9-10, 9-38, 9-72, 9-93, 9-100
purpose 1-5, 8-21, 9-45
redirecting output 8-32, 9-11,

9-38, 9-100
redrawing 9-10, 9-82

Array
character 9-69, 9-79
evaluating 9-78

Arrow keys 2-14, 2-18, 9-9, 9-65
ASCII files

fgiusr.c file B-12
.4db files 8-45, 9-33, 9-80
.4gl files 8-8, 9-18, B-11
.c source files B-13

Asterisk (*)
option of ALIAS command 8-41
option of BREAK command 6-8,

6-9, 6-10
option of TRACE command 9-97
wildcard symbol 2-16, 9-7, 9-61,

9-87
At (@) symbol, database

servers 9-51
AUTOTOGGLE display

parameter 2-17, 6-20, 6-29, 8-27,
9-72, 9-93, 9-100

B
Backslash (\) symbol 9-34
Backspace key 9-8
Backward, searching 9-6, 9-86
Boldface type Intro-9
Boolean expression 9-40
Bourne shell A-2
Braces ({ })

multiple command symbol 9-31,
9-34, 9-96

notation for a forced choice 9-31
specifying commands with

BREAK 4-10
specifying commands with

TRACE 3-25
Brackets ([])

in command syntax notation 9-30
in pattern specifications 2-16, 9-7,

9-62
BREAK command

purpose 8-33, 9-13, 9-40
related commands 8-36, 9-13,

9-44
syntax 9-40
usage 8-33, 9-43

usage with C functions B-22
usage with LET 8-36, 9-70
with command separator (;)

symbol 4-26, 9-34
with continuation (;)

symbol 9-34
with multiple commands in

braces ({ }) 4-26, 8-39
BREAK option

of LIST command 8-41
of WRITE command 4-29, 8-43

Breakpoints
appearance of the Command

window 4-19, 4-28, 6-32
appearance of the Source

window 4-18
commands 8-33, 9-13
deleting 4-25, 9-74
disabling 4-25, 8-35, 9-42
displaying 8-41, 9-12, 9-72
enabling 6-12, 8-35, 9-42
ignoring with STEP 8-36, 9-88
maximum number 8-39, 9-42
names 8-34
purpose 1-4, 1-11, 4-10, 8-33, 9-13,

9-40
reference numbers 8-40, 9-42
resetting a count 9-41, 9-83
saving with WRITE 3-32, 8-43,

9-111
setting at a function 4-12, 6-8,

8-34, 9-42, B-22
setting at a line number 4-11,

5-22, 8-33, 9-42, B-22
setting at a variable 4-11, 5-23,

8-34, 9-42
setting at an IF condition 4-12,

6-10, 8-33, 9-41
setting with BREAK 4-10, 4-26,

6-8, 6-10, 8-33, 9-40
setting without enabling 6-8,

6-10, 9-42
specifying a condition 4-13, 8-33,

9-41
specifying a count 4-13, 4-15,

8-33, 9-41

C
C functions

calling 9-45, B-1
compiling B-6, B-8, B-21
declaring B-5, B-19, B-20
executing with a customized

Debugger B-21
executing with a customized

p-code runner B-22
how they affect Debugger

commands B-22
in 4GL programs 6-36, 9-45, 9-61,

9-106, 9-107, B-1
tracing 9-109, B-22

C language
compiler B-11
functions in 4GL programs 8-17,

9-45, 9-109, B-1
C shell 9-59, A-2
CALL command

and Application screen 8-24, 9-45
appearance of the Command

window 6-39
appearance of the Source

window 6-38
errors 9-22
purpose 6-36, 9-15
related commands 9-15, 9-46
syntax 6-36, 9-45
usage 6-36, 9-46
usage with BREAK 8-36
usage with C functions 9-45, B-22
usage with CLEANUP 9-14, 9-45
usage with TRACE 8-39, 9-96

cat utility
purpose 8-16, B-11
usage 8-16, B-19

cfgldb command
purpose B-11
syntax B-6
usage B-8, B-21

cfglgo command
purpose B-8, B-11
syntax B-8
usage B-21

CHARACTER data type 9-69
2 Guide to the IBM Informix 4GL Interactive Debugger

CLEANUP command
purpose 8-24, 9-14, 9-83
related commands 9-14, 9-48
syntax 9-47
usage 9-48
usage with CALL 9-47
usage with RUN 9-14, 9-47

clear_menu function of cust_order
program C-25

COMMAND
option of GROW 8-31
option of TIMEDELAY 8-30

Command buffer 2-17, 3-9, 8-23,
8-37, 9-8, 9-86, 9-92

Command language
default options 9-24
description 9-5
functional categories 9-6
shortest unique forms 1-18, 2-12,

9-24
Command line

after escape to operating
system 8-25, 9-59

deleting characters from 9-8
in ALIAS command 8-41, 9-35
in BREAK command 8-33
in READ input files 8-44
in TRACE command 8-39, 9-96,

9-109
in WRITE output files 8-43
specifying initialization files 8-18
to invoke the Compiler 8-14, B-11,

B-19
to invoke the Debugger 8-11,

8-17, B-13, B-21
COMMAND LINES display

parameter 8-31, 9-63, 9-72
Command strings, default 9-9
Command syntax

displaying on screen 9-65
notation 9-29

Command window
command buffer 2-17, 3-9, 8-30,

9-91
command set 9-24
copying to a file 9-10, 9-84
cursor movement 1-9, 2-18, 9-8
displaying 8-22, 9-72
escaping from 2-19, 8-23, 9-59

purpose 1-9, 2-17, 8-21
redrawing 9-10, 9-82
searching 2-18, 9-6, 9-86, 9-92
selecting 8-22, 8-49, 9-10, 9-66,

9-67
size 2-17, 2-32, 9-11, 9-63

Commands
for cursor movement 9-9
for program execution 8-39, 9-15
for screen management 9-11, 9-33
to control breakpoints and

tracepoints 8-34, 9-13
to display information 9-12
to specify values 9-14

COMPILE Menu 2-10, 8-8
Compiler

invoking 2-10, 8-13, 9-18, B-11
Menu option 2-10, 8-13

Compiling a form 2-10
Compliance

icons Intro-10
Conditions in BREAK

commands 8-33, 9-42
Contact information Intro-18
Continuation (\) symbol 9-34
CONTINUE command

and Interrupt command 9-67
errors 9-21, 9-23
purpose 1-12, 3-29, 9-15
related commands 1-13, 9-15,

9-50
syntax 9-49
usage 3-29, 6-33, 9-49
usage with BREAK 8-36, 9-41
usage with C functions B-22
usage with LET 9-70
usage with TRACE 8-39, 9-96
with INTERRUPT option 3-29,

9-15, 9-49
Control characters

cursor movement 2-14, 9-8
screen management 9-10, 9-32

Control keys
CTRL-B 2-14, 9-8
CTRL-C 8-23, 9-10, 9-67
CTRL-D 2-14, 9-8
CTRL-F 2-14, 9-8
CTRL-H 9-8
CTRL-J 2-14, 9-8

CTRL-K 2-14, 9-8
CTRL-P 9-10, 9-84
CTRL-Q 9-10
CTRL-R 9-10, 9-68, 9-82
CTRL-S 8-30, 9-10
CTRL-T 8-24, 9-10, 9-68, 9-93,

9-100
CTRL-U 2-14, 9-8

Current application program
replacing 8-18
resuming a debugging session

with 9-63
specifying 8-11, 8-17

Current database 9-14, 9-45, 9-51
Current function

defined 9-17
displaying declarations of

variables 9-105
displaying source code 8-27,

9-107
Current module

defined 9-17
replacing 9-107

Current statement
displaying 8-28, 8-29, 9-67
executing 9-88
highlighting 8-27, 9-101
interrupting 9-10, 9-67

Current window
cursor movement 9-9
searching 9-6, 9-86
selecting 8-22, 9-11, 9-59, 9-93

Cursor movement keys 2-14, 9-9,
9-92

customer program
description 2-4, C-1
listing 2-4, C-2

Customized Debugger B-6, B-13,
B-21

Customized p-code runner B-8,
B-21, B-22

cust_order program
add_order function C-32
clear_menu function C-25
description 5-4
fetch_stock function C-25
get_item function C-44
get_stock function C-43
globals.4gl module C-14
Index 3

insert_items function C-42
insert_order function C-37
item_total function C-40
listing 5-5, C-14
MAIN statement C-24
main.4gl module C-15, C-24
mess function C-25
order.4gl module C-17, C-32
order_total function C-39
query_customer function C-27
renum_items function C-41

D
Data types

conversion 9-69
declaration 9-69, 9-105

Database
closing 9-14, 9-47, 9-83
remote 9-51

DATABASE command
purpose 1-17, 9-14
related commands 9-14, 9-52
syntax 9-51
usage 9-52
usage with CALL 9-45

DATABASE statement of 4GL 2-12,
9-45

dbdemo command B-15
DBEDIT environment variable 8-7
DBPATH environment

variable 8-20, B-11
DBSRC environment variable 8-10,

8-20, A-3, B-11, B-15
Debug Menu option 8-13, 8-49
Debugger Intro-16

exiting from 2-33, 8-49, 9-15, 9-60
invoking 1-4, 8-11, 8-17

Debugger commands
entering from Source

window 2-13, 9-33
names 9-25
syntax 9-32

Debugger screen
copying to a file 9-10, 9-84
description 1-5, 8-21
displaying 1-7, 8-22, 9-10, 9-59

purpose 1-7, 8-21
scrolling 9-6, 9-86, 9-107

Debugger windows and screens
closing 9-60
description 1-10, 8-21
redrawing 9-10, 9-82

Debugging environment
description 1-3, 8-3
entering 8-11, 8-13
exiting from 8-49, 9-60
restoring 3-4, 4-8, 8-49, 9-14, 9-63,

9-80, 9-111
saving 8-47, 9-12, 9-111
setting parameters 1-9, 8-26, 8-44,

9-11
Declaration of a C function B-5,

B-12, B-20
Declaration of a variable or

record 9-12, 9-105
Default

aliases 1-19, 8-21, 8-43, 9-36
arguments of a RUN

command 9-83
breakpoint count 9-41
command options 9-24, 9-31
debugging environment

parameters 8-43
directory search path 8-19, 9-14
display parameters 2-17, 8-26,

8-41
editor 8-8
file extension 8-44, 9-80
name of customized

Debugger B-7
name of customized p-code

runner B-9
output filename of WRITE

command 8-43, 9-111
pattern specification 9-7, 9-86
timedelay 9-91
window specification 8-29, 8-31,

9-91, 9-92
Default locale Intro-6
DEFER INTERRUPT statement of

4GL 3-29, C-24
DEFER QUIT statement of

4GL 9-50
Delete key 9-10, 9-67
Dependencies, software Intro-6

Desk checking, description 1-4
Directory

current 8-19, 8-46, A-1
for Debugger command files A-1
for temporary files A-1
home directory 8-45
INFORMIXDIR/etc 8-45, B-4
nondefault 8-19, 9-78, 9-109, 9-112
search path 8-17, 8-42, 9-14, A-3

DISABLE command
purpose 4-16, 9-13
related commands 9-13, 9-54
syntax 9-53
usage 4-16, 6-29, 9-54
usage with BREAK 9-42
with ALL option 7-5

Disabling
breakpoints and tracepoints 9-13,

9-42, 9-97
terminal I/O 8-30, 9-10
the user interface 9-38

DISPLAY option
of LIST command 6-11, 8-41,

9-101
Display parameters

APPLICATION DEVICE 8-32,
9-38, 9-73, 9-84, 9-100

AUTOTOGGLE 2-17, 6-20, 6-29,
8-27, 9-38, 9-72, 9-93, 9-100

COMMAND LINES 8-31, 9-63,
9-72

default values 8-26
DISPLAYSTOPS 2-17, 8-27, 9-17,

9-67, 9-72, 9-88, 9-100
EXITSOURCE 2-13, 2-17, 8-23,

8-27, 9-67, 9-72, 9-101
PRINTDELAY 2-17, 8-28, 9-72,

9-97, 9-101
restoring 2-29, 9-111
saving with WRITE 2-29, 8-42,

9-111
setting 2-23, 8-26, 8-44, 9-11
SOURCE LINES 8-31, 9-63, 9-72
SOURCETRACE 2-17, 2-23, 8-28,

9-72, 9-91, 9-101
TIMEDELAY COMMAND 8-30,

9-11, 9-73, 9-91
TIMEDELAY SOURCE 2-23,

8-29, 9-11, 9-72
4 Guide to the IBM Informix 4GL Interactive Debugger

Displaying
active functions 9-109
an entire sqlca record 9-79
application program output 8-24,

9-38, 9-45, 9-100
Application screen 8-24, 9-38,

9-93, 9-100
breakpoints 8-41, 9-12, 9-42, 9-72,

9-74
command keywords 8-24, 9-65
Command window 8-22
currently executing 4GL

statement 8-37, 9-13, 9-101
debugging environment

parameters 8-41, 9-12, 9-101
declaration of a variable 9-12,

9-105
error messages 8-23, 9-46
execution stack 9-12
function names 9-12, 9-61
help messages 8-24, 9-11, 9-65
Help screen 1-19, 8-24, 9-11, 9-65
keyboard aliases 8-41, 9-12
operating system display 8-25,

9-11, 9-59
output from the Debugger 8-23,

9-92
source code 8-23, B-22
source file search path 8-42, 9-12,

9-103
Source window 8-23
terminal device name 8-41, 9-39,

9-73
tracepoints 8-41, 9-12, 9-72, 9-95
variables in current function 1-14,

3-22, 9-12, 9-78, 9-96
version numbers of SQL and

p-code 8-14, 8-18, B-7, B-9
DISPLAYSTOPS display

parameter 2-17, 8-27, 9-67, 9-72,
9-88, 9-100

Documentation
on-line manuals Intro-16

Documentation, types of
related reading Intro-17

Dollar ($) sign
Command window prompt 1-9,

2-17, 9-8, 9-61
jump to end of source

module 2-15, 9-9

DUMP command
display of module variables

with 5-24
errors 9-23
purpose 1-14, 3-17, 3-33, 9-12
redirect output to a file 3-18, 9-12
related commands 9-12, 9-56
syntax 3-17, 9-55
usage 1-16, 3-18, 9-55
usage with C functions B-22
with ALL option 3-17, 5-24
with GLOBALS option 1-14, 3-17,

5-24

E
ENABLE command

purpose 6-12, 8-35, 9-13
related commands 9-13, 9-58
syntax 9-57
usage 6-12, 6-29, 9-57

Enabling
breakpoints or tracepoints 9-13,

9-57
terminal I/O 9-10

Environment variables Intro-9
assigning A-2
DBEDIT 8-7
DBPATH 8-20, B-11
DBSRC 8-10, 8-20, A-3, B-11, B-15
INFORMIXDIR B-11, B-15
PATH B-11, B-15
TERMCAP 8-32, 9-35, 9-38
TERMINFO 8-32, 9-35, 9-38

en_us.8859-1 locale Intro-6
Equal (=) sign

in ALIAS command 8-21, 8-42
in BREAK command 8-34, 9-44
in LET command 9-69
in USE command 8-20

Error messages
displaying 8-23, 9-46
example 9-22, 9-98, 9-110

Escape feature
executing operating system

commands with 2-19, 6-42,
8-22, 9-59

purpose 8-25, 9-11, B-22
related commands 9-15

syntax 9-59
usage 9-59

ESCAPE key 9-59
ESQL/C functions 8-17, 9-45, 9-96,

9-109, B-1
Evaluating

arrays 9-96
expressions 9-78
parameters passed with

functions 9-109
records 9-96
variables 8-35, 9-12, 9-45, 9-96

Exclamation point 2-19, 6-42, 8-25,
9-59

Executable statements 8-33, 8-37,
9-41, 9-88, 9-96

EXIT command
purpose 2-33, 8-21, 8-26, 8-32,

8-49, 9-15
related commands 9-15, 9-60
syntax 9-60
usage 2-33, 3-32, 8-49, 9-60

EXIT PROGRAM statement of
4GL 9-21, B-15

EXITSOURCE display
parameter 2-13, 2-17, 8-23, 8-27,
9-67, 9-72, 9-101

export utility A-2
Expressions

assigning to variables 9-69
evaluating 9-12, 9-78

Extension, to SQL, symbol
for Intro-10

F
-f command-line option 8-46, 9-32,

B-13
Fatal errors

appearance of the Command
window 1-17

appearance of the Source
window 1-17, 9-100

defined 1-4
diagnosing 1-17, 7-6
resuming execution

following 1-17, 9-21
Index 5

when debugging a program 7-4,
9-21, 9-100

when running a program 7-4
Feature icons Intro-10
fetch_stock function of cust_order

program C-25
fgiusr.c file

functions B-5
purpose B-8, B-10
renaming B-7, B-9
syntax B-5
usage B-6, B-8, B-20, B-21

fglapscr file 9-84
fgldb command 8-17, 9-103
fgldbscr file 9-84
fglpc command

purpose B-10
usage B-19

File extensions
.4db 2-30, 3-4, 8-42, 9-33, 9-80,

9-111
.4gi 8-6, 8-16, B-19
.4gl 8-6, 9-18, B-11
.4go 8-6, 8-14, B-11
.c B-7, B-9, B-14
.ec B-7, B-9, B-14
.err 8-13, 8-14
.o B-7, B-9, B-14
.per 8-9

Form specifications, examples C-21
Forms

closing 9-14, 9-47, 9-83
compiling 2-10, 5-15

Forward, searching 9-6, 9-86
Function calls

C functions 8-17, 9-42, 9-45, B-1
INFORMIX-ESQL/C

functions 8-17, 9-45, B-23
Function keys

assigned by ALIAS
command 8-21, 9-14

assigned by application
program 1-19, 8-21

default aliases 8-43
displaying aliases 8-41
names 1-19, 8-20, 9-35

FUNCTION qualifier 3-7, 4-11,
4-20, 9-70

Functions
4GL language 8-39, 9-21, 9-42,

9-45, 9-61, 9-96, 9-106
active 4-19, 9-20, 9-109
C language 6-36, 8-17, 8-39, 9-45,

9-61, 9-96, 9-106, B-1
executing 6-36, 9-45, 9-88
INFORMIX-ESQL/C 8-17, 9-61,

9-96, 9-106, B-1, B-23
names 9-61
popping and pushing B-1
restarting 9-14, 9-45, 9-47
setting breakpoints at 4-12, 6-8,

8-34, 9-41
setting tracepoints at 3-7, 8-38,

9-96
viewing in the Source

window 2-13, 5-21, 9-107
FUNCTIONS command

purpose 9-12
related commands 9-12, 9-62
syntax 9-61
usage 1-9, 9-62
usage with C functions B-22

FUNCTIONS option of
TRACE 3-8, 8-38, 9-25, 9-96

G
getrand.c file

getrand function B-18
initrand function B-18

get_item function of cust_order
program C-44

get_stock function of cust_order
program C-43

Global Language Support
(GLS) Intro-6

GLOBAL qualifier 3-7, 4-12, 9-17,
9-70

Global variables
active 9-22
declarations 9-105
evaluating 9-55
examining 3-22, 9-78
inactive 9-22
qualifying 3-7, 4-12, 9-17

GLOBALS
option of DUMP command 1-14,

3-17, 5-24
option of VARIABLE

command 7-19, 9-105
statement of 4GL 2-12, 9-19

globals.4gl module of cust_order
program C-14

GROW command
purpose 2-32, 8-30, 9-11
related commands 9-11, 9-64
syntax 9-63
usage 8-31, 9-64

H
HELP command

options with underscore
prefix 9-25

purpose 8-24, 9-11
related commands 9-11, 9-66
syntax 9-65
usage 1-19, 9-66

Help messages
displaying 2-13, 8-24, 9-65
paging through 8-24, 9-65

Help screen
cursor movement 9-9
displaying 1-19, 8-24, 9-11, 9-65
purpose 8-22
redrawing 9-10, 9-82

Highlighting
current 4GL statement 8-28, 9-67,

9-101
Help topics 9-65

Home directory 8-45
Host system 9-51

I
-I command-line option 8-20, B-13
Icons

compliance Intro-10
feature Intro-10
platform Intro-10
product Intro-10
syntax diagram Intro-13

Identifier, database name 9-51
6 Guide to the IBM Informix 4GL Interactive Debugger

IF option of BREAK
command 1-11, 4-12, 6-10, 8-33,
9-43

Inactive
breakpoints 8-36
variables 9-22

INFORMIX-4GL
command file names 8-13
software installation B-11

INFORMIXDIR environment
variable B-11, B-15

INFORMIXDIR/etc directory 2-32,
8-45, B-4

INFORMIX-ESQL/C
functions 8-17, 9-15, 9-45, 9-61,
9-96, 9-106, 9-107, B-1

INFORMIX-ESQL/C source
files B-7, B-9

Initial default environment
parameters

modifying 9-101
restoring 8-49, 9-101
values 8-26, 8-43, 9-101

Initialization files
command-line option 8-46
creating 8-47, 9-80, 9-111
in command line 9-33
non-keyword commands 9-33
program 2-30, 8-46
system 2-32, 8-45, 9-36
user 8-45

init.4db
system initialization file 2-32,

8-45, 9-36
user initialization file 8-45

insert_items function of cust_order
program C-42

INSTALL program 8-45, B-4
INTEGER data type 9-70
Interrupt command

purpose 9-10
related commands 9-15, 9-68
syntax 9-67
usage 9-68
usage with APPLICATION

DEVICE 9-38
usage with CONTINUE 9-67
usage with EXIT command 9-60

Interrupt key
and redraw command 9-68, 9-82
identifying 9-67
interrupting the current 4GL

statement 3-18, 9-67
purpose 1-7, 2-13, 3-19, 8-23, 9-10
switching windows 8-23

INTERRUPT option of
CONTINUE 3-29, 9-21, 9-67

INTERRUPT option of HELP 9-67
Interrupt signal 9-15, 9-67
INTO option of STEP

command 6-25, 9-88, B-22
Invoking the Compiler 8-14, B-11
Invoking the Debugger

from the command line 8-17
from the Programmer’s

Environment 8-11
to analyze programs that call C

functions B-13, B-21
ISO 8859-1 code set Intro-6
item_total function of cust_order

program C-40

J
Jump commands for cursor

movement 9-9

K
Keyboard

aliases 8-20, 9-14
disabling 8-30, 8-32, 9-10
enabling 9-10
of application device 8-32, 9-38

Keyboard input
to application 8-21, 8-24, 8-32,

9-38, 9-60, 9-100
to Debugger 8-23
to Help facility 8-24, 9-65
to Operating system display 8-25,

9-59
Keywords

abbreviating 9-24
options of HELP command 9-25,

9-65

L
LET command

errors 9-21
purpose 4-22, 9-14
related commands 9-14, 9-71
syntax 9-69
usage 4-22, 6-37, 9-70
usage with RUN 9-14

LET statements of 4GL 9-69
Library functions

evaluating current
parameters 9-96, 9-109

written in C language B-1
Line numbers

automatically displayed in Source
window 8-21

in setting breakpoints 4-11, 5-22,
8-33

in setting tracepoints 3-5, 5-22,
8-37, 9-96

LIST command
purpose 2-17, 2-32, 8-40, 9-12,

9-72
related commands 9-12, 9-73
syntax 9-72
usage 9-73
with DISPLAY option 6-11, 8-41
with WRITE DISPLAY 9-111

Local variables
examining 3-24, 9-78
qualifying 3-7, 4-11, 4-20, 9-17

Locale Intro-6
Logical AND 8-34
Logical errors

defined 1-4
examining 4-4

Login account name 8-32, 8-46, 9-38
Lowercase characters

command syntax notation 9-30
in pattern specifications 9-62,

9-86
Index 7

M
MAIN program block 2-12, 5-19,

9-17, 9-20, 9-45
main.4gl module of cust_order

program C-15, C-24
Menu options, of Help facility 8-24
Minus (-) sign

before count in BREAK
commands 9-41

C functions with a variable
number of arguments B-5

MODULE Menu 2-10
MODULE qualifier 5-23, 9-17, 9-23
Module variables

defined 5-23
display with the DUMP

command 5-24
qualifying 5-23, 9-17

Moving the cursor 9-9
Multi-module programs

compiling 5-17, 8-8, 8-17
defining in Programmer’s

Environment 5-15
that call C functions B-11, B-13,

B-21
Multiple commands 9-34, 9-80

N
Names

of 4GL identifiers 9-17, 9-53
of breakpoints 8-34, 9-41, 9-53,

9-74
of tracepoints 8-38, 9-53, 9-76,

9-96
Naming rules, databases 9-51
NOBREAK command

purpose 4-25, 8-36, 9-13
related commands 9-13, 9-75
syntax 9-74
usage 4-25, 9-75

NOBREAK option of STEP 8-36,
9-88

Nonblank characters 9-7, 9-61
Nondefault .4db files 8-46
Nonstandard terminals 9-63

Nonunique names 9-53, 9-74, 9-76,
9-107

NOTRACE command
purpose 3-27, 9-13
related commands 9-13, 9-77
syntax 9-76
usage 3-27, 9-77

Null values 9-14, 9-83

O
-o option

of cfgldb command B-7, B-9
of cfglgo command B-14

Object files B-7, B-9, B-14
OFF option of TURN 8-27, 9-93,

9-97, 9-100
ON option of TURN 8-27, 9-31,

9-67, 9-88, 9-100
On-line

Help for developers Intro-16
On-line manuals Intro-16
Operating system

environment A-1
escaping to 2-19, 6-42, 8-25, 9-11,

9-59, B-22
invoking the Compiler from 8-14
invoking the Debugger from 8-17
invoking the Programmer’s

Environment from 8-6, 8-12
returning to 8-49, 9-15, 9-60, 9-63,

9-101, 9-104
Operating system display

closing 8-25, 9-59
command set 8-25
displaying 8-24, 8-25, 9-11, 9-59
purpose 8-22
selecting 9-59

order.4gl module of cust_order
program C-17, C-32

order_total function of cust_order
program C-39

Output
from 4GL application 8-24, 9-93,

9-100
from C functions 9-93, 9-100, B-21
from Debugger 8-23, 9-91, 9-112

from Help facility 8-24, 9-65
from operating system

commands 8-25, 9-59
Output files

from PRINT command 8-34
from Screen command 9-84
from TRACE command 6-5, 6-6,

6-42, 8-37
from VARIABLE command 9-105
from WRITE command 8-47

P
Paging through Help

messages 8-24, 9-65
Partial pattern matching 9-7, 9-87
PATH environment variable B-11,

B-15
Pathname

of output file 9-78, 9-80, 9-109,
9-112

Pattern specification, in Search
command 2-15, 9-6, 9-86

P-code runner 8-11, B-8, B-13
P-code version number 8-14, 8-18,

B-7, B-9
Period (separating qualifiers) 9-16
Platform icons Intro-10
PRINT command

errors 9-22
printing the value of a

variable 4-20, 7-20
printing the values of a

record 4-20, 6-5
printing the values of an

array 6-6, 6-45
purpose 1-15, 4-19, 9-12
related commands 9-12, 9-79
syntax 9-78
usage 1-16, 4-19, 7-20, 9-79
usage with BREAK 8-33, 8-36,

9-42
usage with C functions B-22

PRINTDELAY display
parameter 2-17, 8-28, 9-72, 9-97,
9-101

Printer utility A-1
Product icons Intro-10
8 Guide to the IBM Informix 4GL Interactive Debugger

Program execution
abnormally terminating 9-21,

9-47
commencing 2-20, 8-11, 9-15, 9-21
interrupting 1-11, 3-18, 9-13
resuming 1-11, 1-12, 3-29, 8-36,

9-14, 9-15, 9-21, 9-49, 9-83, 9-88
suspending 3-19, 8-33, 9-20, 9-40
terminating normally 2-33
tracing 8-28, 9-13, 9-101, B-23

Program initialization file
function 8-46
nonkeyword commands 9-33
purpose 2-30
restoring values from 3-4, 4-8,

8-46
saving values with WRITE 2-30,

3-32, 4-29, 8-46
PROGRAM Menu 8-11
Programmer-defined

functions 1-9, 9-61, 9-109, 9-110,
B-1

Programmer’s Environment
compiling a form 2-10, 5-15, 8-9
compiling a program 2-10, 5-17,

8-8
defining a program 5-15, 8-7
exiting from the Debugger

to 8-21, 8-26, 9-15, 9-60, 9-63
invoking the Debugger from 8-11
menu options 8-13
returning to the Debugger

from 8-49, 9-104
Program_Compile menu

option 7-23
Pseudo-code Intro-6

Q
Qualifying variable names 8-37,

9-16, 9-42, 9-70, 9-78, 9-96, 9-105
Question (?) mark

search backward command
symbol 2-15, 9-6, 9-86

wildcard symbol 2-16, 9-7, 9-61,
9-86

Quit key 9-49

QUIT option of CONTINUE
command 9-21

Quit signal 9-15
Quotation marks

around a breakpoint name 8-34,
9-41, 9-74

around a tracepoint name 8-38,
9-76, 9-96

in LET commands 6-37, 9-69

R
r4gl command 8-6
Random numbers B-14
Range of characters, symbol

for 9-7, 9-61
READ command

purpose 8-44, 8-46, 9-14
related commands 9-14, 9-81
syntax 9-80
usage 9-81
usage with WRITE 9-111

Record
declaration of its variables 9-105
evaluating 9-78

Redraw command
and Interrupt key 9-68
purpose 9-10
related commands 9-82
syntax 9-82
usage 9-82

Reference numbers
of breakpoints 4-9, 4-15, 8-40,

9-42, 9-72, 9-74
of tracepoints 3-26, 4-9, 4-15, 8-40,

9-72, 9-76, 9-95
Reinitializing program

variables 8-36, 9-70, 9-83
Related reading Intro-17
Restoring debugging environment

parameters 3-4, 4-8, 8-49, 9-80
RETURN key

after an EXIT command 8-49, 9-60
cursor movement 9-8
to enter a command 9-8
to exit from the Help screen 8-23,

9-66

to search in Source window 9-9,
9-86

to select Help topics 9-65
RUN command

and Application screen 8-24
and BREAK command 9-41
purpose 2-20, 9-15
related commands 9-15, 9-83
syntax 9-83
usage 2-20, 9-83
usage with BREAK 8-36, 9-41
usage with C functions B-22
usage with CALL 9-45
usage with CLEANUP or

LET 9-14, 9-70
usage with DATABASE 9-52
usage with TRACE 8-39, 9-96

Run menu option 8-13
Runner

creating a customized
version B-14

invoking 8-13, B-14, B-22
using to execute p-code Intro-6

r_globals.4gl module B-18
r_main.4gl module B-15

S
Scope of reference

defined 9-16
examples 9-19
in BREAK commands 9-41
in TRACE commands 9-96
in VARIABLE commands 9-105
rules 9-17

Screen command
purpose 9-10
related commands 9-85
syntax 9-84
usage 9-84

Screen management
commands 9-11
control keys 9-10

Screen output
from 4GL application 8-24, 8-32,

9-38, 9-45, 9-72, 9-73, 9-84,
9-100

from C functions 9-45, B-21
Index 9

from Debugger 8-23, 8-30, 9-68,
9-73, 9-84, 9-91

from Help facility 8-24, 9-11, 9-65
from operating system

commands 8-25, 9-11, 9-59
Search command

purpose 9-6
related commands 9-87
syntax 9-86
usage 9-87

Search path
displaying with USE 8-42, 9-103
methods to specify 8-19
saving with WRITE 2-32, 8-42,

8-43, 9-104, 9-111
specifying with DBSRC A-3
specifying with USE 8-20, 9-86,

9-103
with comma separators 9-104

Search pattern 2-15, 9-6, 9-86
Semicolon (;) command

separator 8-39, 9-35
setenv utility A-2
Shortest unique forms 9-24
Signal handling 9-49, 9-67
Single character, symbol for 9-7,

9-61
Slash (/)

arithmetic operator in
expressions 9-70, 9-79

directory separator in UNIX
pathnames 9-104, 9-110

search forward command
symbol 2-15, 9-6, 9-86

symbol for logical OR 8-26
SLEEP statement of 4GL 8-29
Software dependencies Intro-6
SOURCE

option of GROW 8-31
option of TIMEDELAY 8-29

Source code
displaying 9-11, 9-107
effect of LET command 9-69
highlighting 9-72
searching 9-7, 9-86

SOURCE LINES display
parameter 8-31, 9-63, 9-72

Source modules
compiling 2-10, 5-17, 8-14, B-11
concatenating 8-16, B-11
displaying 2-12, 5-19, 5-20, 8-23,

9-11, 9-107
locating 2-32, 8-19, 9-103
modifying 8-49
multiple 8-16, B-11
search path 2-32, 8-17, 8-19, 8-42,

9-14, 9-103, 9-111
Source window

command set 8-23, 9-33
copying to a file 9-10, 9-84
cursor movement 1-8, 2-14, 9-8
escaping from 8-23, 9-8, 9-59
highlighted statement 9-67
purpose 1-8, 8-21
redrawing 9-10, 9-82
searching 2-15, 9-7, 9-86
selecting 8-23, 9-11, 9-107
size 2-17, 2-32, 8-31, 9-11, 9-63
source module name 8-23, 9-63,

9-107
SOURCETRACE display

parameter 2-17, 2-23, 4-9, 8-28,
9-72, 9-91, 9-101

SQL statements 3-23, 9-45
SQL version number 8-14, 8-18,

B-7, B-9
SQLCA record, displaying the

values of 1-14, 3-23, 9-79
sqlcode 3-23, 9-98
Standard 24-line terminal 8-26,

9-63
status variable, displaying the value

of 1-14, 3-23
STEP command

appearance of the Command
window 6-22

appearance of the Source
window 6-22

errors 9-21, 9-23, 9-88
purpose 1-13, 4-23, 6-21, 9-15
related commands 1-13, 9-15,

9-90
specifying the number of

steps 4-23, 9-88
stepping INTO a function 6-25,

9-88, B-22

stepping over a function 6-23,
9-88, B-22

syntax 9-88
usage 4-23, 6-21, 9-89
usage with BREAK 8-36, 9-41
usage with C functions B-22
usage with TRACE 8-39, 9-96

String searches 2-15, 9-6
stty utility of UNIX 9-49
Substrings

of character arrays 9-69, 9-79
searching for 2-16, 9-62, 9-87

Suspending 4GL program
execution 8-33, 9-20, 9-40

Synopsis of the Debugger
commands 8-24, 9-65

Syntax
notational conventions 9-29
of a customized Debugger B-13
of command line to compile a 4GL

source file 8-14
of command line to create a

customized runner B-8
of command line to invoke the

Debugger 8-17
of command-line to create a

customized Debugger B-6
of fgiusr.c file to declare C

functions B-5
of scope of reference

qualifiers 9-16
synopsis 8-24

Syntax conventions
description of Intro-11
example diagram Intro-14
icons used in Intro-13

Syntax diagrams, elements
in Intro-12

System default parameters 8-45,
9-36

System initialization file 2-32, 8-45,
9-36

System requirements
database Intro-6
software Intro-6
10 Guide to the IBM Informix 4GL Interactive Debugger

T
Temporary

files, specifying directory with
DBTEMP A-3

TERMCAP environment
variable 8-32, 9-35, 9-38

Terminal display parameters
APPLICATION DEVICE 8-32,

9-73, 9-84, 9-100
AUTOTOGGLE 2-17, 8-27, 9-72,

9-93, 9-100
COMMAND LINES 8-31, 9-63,

9-72
default values 8-26
DISPLAYSTOPS 2-17, 8-27, 9-67,

9-72, 9-88, 9-100
EXITSOURCE 2-13, 2-17, 8-23,

8-27, 9-67, 9-72, 9-101
PRINTDELAY 2-17, 8-28, 9-72,

9-97, 9-101
setting 2-23, 8-26, 8-44, 9-11, 9-111
SOURCE LINES 8-31, 9-63, 9-72
SOURCETRACE 2-17, 8-28, 9-72,

9-91, 9-101
TIMEDELAY COMMAND 8-30,

9-11, 9-73, 9-91
TIMEDELAY SOURCE 8-29,

9-11, 9-72
Terminal I/O

disabling 9-10
enabling 9-10

Terminal pathname 9-38
Terminating a debugging

session 8-49, 9-15
TERMINFO environment

variable 8-32, 9-35, 9-38
Text editor 8-45, 9-59, 9-80, A-1,

B-12, B-20
Three dots (...) command syntax

notation 9-32
TIMEDELAY command

purpose 8-29, 9-11
related commands 8-39, 9-11,

9-92
syntax 9-91
usage 2-17, 9-92

TIMEDELAY COMMAND display
parameter 8-30, 9-11, 9-73, 9-91

TIMEDELAY SOURCE display
parameter 2-23, 8-29, 9-11, 9-72

Toggle command
and APPLICATION

DEVICE 9-38
and Interrupt key 9-68
purpose 8-27, 9-10
related commands 9-94
syntax 9-93
usage 9-94

Toggle key 8-22, 9-10, 9-93
TRACE command

purpose 3-5, 8-37, 9-13
related commands 9-13, 9-99
specifying commands with braces

({ }) 3-25, 8-39
syntax 9-95
usage 3-5, 8-37, 9-97
usage with C functions 9-96, B-22
with command separator (;)

symbol 8-39, 9-34, 9-96
with continuation (\)

symbol 9-34
TRACE option, of LIST

command 8-41
Tracepoints

commands 9-13, 9-96
deleting 3-27, 8-39, 9-76
displaying 8-41, 9-12, 9-72, 9-76
maximum number 8-39, 9-97
names 8-38, 9-76, 9-96
purpose 1-4, 1-10, 3-33, 8-37, 9-13
reference numbers 3-8, 8-40, 9-76,

9-95
saving with WRITE 3-32, 8-43,

9-111
setting at a function 3-7, 8-38,

9-96, B-22
setting at a line number 3-5, 5-22,

8-37, 9-96, B-22
setting at a variable 3-6, 5-23,

8-37, 9-96
setting with TRACE 3-5, 3-8, 6-5,

6-6, 8-37, 9-95
setting without enabling 6-8, 9-97
tracing all functions 3-8, 8-38,

9-96
writing output to a file 3-9, 6-5,

6-6, 6-42, 9-98

TRUE 9-40
Truncation in data type

conversion 9-69
TURN command

purpose 2-23, 8-27, 9-11
related commands 9-11, 9-102
syntax 9-100
usage 8-27, 9-102

Typographic conventions 9-29

U
Underscore (_) symbol

in HELP command options 9-25,
9-59, 9-65, 9-67, 9-82, 9-84, 9-86,
9-93

in reference point names 9-96
notation for a default option 9-31

Unique forms of keywords 9-24,
9-65

Unique names of breakpoints and
tracepoints 8-40, 9-41, 9-96

Unique variable names 9-19
UNIX operating system A-1
Uppercase characters

command syntax notation 9-29
in pattern specifications 9-86

USE command
purpose 2-32, 8-20, 8-42, 9-14
related commands 9-14, 9-104
syntax 9-103
usage 9-104

User account name 8-32, 8-46, 9-38
User default parameters 8-45
User initialization file 8-45, 9-33
User interface 8-3

V
-V command-line option 8-14, 8-18,

B-7, B-9, B-13
Values

of parameters passed with
functions 9-109, B-5

specifying 9-14, 9-63
VARIABLE command

purpose 7-18, 9-12
related commands 9-12, 9-106
Index 11

syntax 7-18, 9-105
usage 7-18, 9-106
usage with C functions B-22
with ALL option 7-19, 9-105
with GLOBALS option 7-19,

9-105
with variable name 7-19, 9-105

Variables
active 9-22
assigning values 9-14, 9-69
displaying declarations 7-18,

9-12, 9-105
environment A-2
evaluating 1-14, 9-12, 9-78, B-22
global 9-16
inactive 9-22
initializing 9-14, 9-47, 9-83
local 9-16
module 5-23, 9-16
qualifying 3-7, 4-11, 4-20, 5-23,

8-37, 9-16, 9-43, 9-78, 9-98
scope of reference 9-16, 9-42, 9-96
setting breakpoints 4-11, 4-12,

8-34
setting tracepoints 3-6, 8-37, 9-96
within records 9-105

Version numbers of SQL and
p-code 8-14, 8-18, B-7, B-9

Versions of the fgiusr.c file B-10
Vertical (|) bar 9-31
vi text editor 8-8, A-1
VIEW command

purpose 2-12, 5-19, 8-23, 9-11
related commands 9-11, 9-108
syntax 5-19, 9-107
usage 2-13, 5-19, 9-107
usage with C functions B-22

W
WHERE command

errors 9-23
purpose 7-10, 9-12, 9-21
related commands 9-12, 9-110
syntax 7-10, 9-109
usage 7-10, 9-110
usage with C functions B-22
usage with TRACE 9-109

Wildcard symbols 2-16, 9-7, 9-61,
9-87

Windows
closing 9-14, 9-45, 9-47, 9-83
of Debugger 8-21

WRITE command
purpose 2-30, 8-42, 8-47, 9-12
related commands 9-12, 9-113
syntax 2-30, 9-111
usage 2-30, 9-112
usage with READ 9-80
with BREAK option 4-29, 8-34
with DISPLAY option 4-29
with TRACE option 3-32, 8-38

X
X-OFF key 8-30, 9-10, 9-33
X-ON key 9-10, 9-33

Z
Zero or more characters, symbol

for 9-7, 9-61
Zero values 8-34, 9-14, 9-47, 9-83,

9-91

Symbols
)

in pattern specifications 9-7, 9-61,
9-87

in specifying array members 9-43
in specifying substrings 9-70, 9-79
12 Guide to the IBM Informix 4GL Interactive Debugger

	Informix Online Documentation
	Table of Contents
	Introduction
	In This Introduction
	About This Manual
	Organization of This Manual
	Types of Users
	Software Dependencies
	Assumptions About Your Locale
	Debugger Demonstration Database and Examples
	Accessing Databases from Within 4GL

	Documentation Conventions
	Typographical Conventions
	Icon Conventions
	Feature, Product, and Platform Icons
	Compliance Icons

	Syntax Conventions
	Elements That Can Appear on the Path
	How to Read a Syntax Diagram

	Additional Documentation
	Documentation Included with 4GL
	On-Line Manuals
	On-Line Help
	On-Line Error Messages
	Related Reading

	Informix Welcomes Your Comments

	Introduction to the Debugger
	In This Chapter
	Introducing the Debugger
	Using the Debugger
	The Debugger Screens
	The Application Screen
	The Debugger Screen

	Tracepoints
	Breakpoints
	Resuming Execution of a Program
	Viewing the Values of Program Variables
	Analyzing Fatal Errors
	Short Forms of Commands
	Function Keys
	Requesting Help

	Getting Started with the Debugger
	In This Chapter
	The customer.4gl Program
	Compiling the Form and Program

	Operating the Debugger
	Viewing the Source Window
	The VIEW Command
	Returning to the Command Window
	Viewing a Specific Function
	Scrolling the Source Window
	Searching for Patterns of Characters
	Using Wildcards

	Working with the Command Window
	The LIST Command
	Scrolling the Command Window
	Searching in the Command Window
	Executing Operating System Commands

	Starting the Debugger
	The Application Screen

	The Terminal Display State
	SOURCETRACE
	Running with SOURCETRACE

	Restoring the Environment
	Saving the Environment
	The WRITE Command
	The customer.4db File
	Exiting from the Session

	Tracing Logic of the customer Program
	In This Chapter
	Restoring the Environment
	The TRACE Command
	Tracing a Line Number
	Tracing a Variable
	Tracing a Function
	Tracing All Functions
	Setting a Tracepoint
	Outputting to a File

	Running with a Tracepoint
	The DUMP Command
	The GLOBALS Option
	The ALL Option
	Dumping to a File
	Executing the DUMP Command

	Interrupting Program Execution
	Interrupting a Program Versus Interrupting�the�Debugger
	Entering an Interrupt
	Examining Global Variables
	Examining Local Variables

	Combining Commands
	Removing Tracepoints
	The CONTINUE Command
	Sending an Interrupt to a Program
	Entering the CONTINUE Command

	Saving and Exiting

	Analyzing a Logical Error in the customer Program
	In This Chapter
	Observing Problems with the Program
	Choosing Delete Twice in Succession
	Choosing Delete and Modify in Succession

	Accessing the Debugger
	The Restored Environment
	Reference Numbers

	Modifying the Environment

	The BREAK Command
	Breaking at a Line Number
	Breaking at a Variable
	Breaking at a Function
	Breaking If an Expression Is True
	Specifying a Count
	Specifying a Condition
	Setting the First Breakpoint for the Current Session

	The DISABLE Command
	Reaching the First Breakpoint
	The PRINT Command
	Printing the Value of a Variable
	Printing the Values of Record Members
	Entering the PRINT Command

	The LET Command
	The STEP Command
	Entering the STEP Command

	The NOBREAK Command
	Setting the Second Breakpoint for the Current�Session
	Reaching the Second Breakpoint

	Saving and Exiting
	Correcting the customer Program

	A Multi-Module Program: cust_order
	In This Chapter
	The cust_order Program
	MODULE #1: globals.4gl
	MODULE #2: main.4gl
	MODULE #3: order.4gl

	Defining and Compiling the Program
	Compiling the Program

	Working with Multi-Module Programs
	Viewing a Module in the Source Window
	Viewing a Function in a Different Module
	Searching the Current Module
	Setting Tracepoints or Breakpoints at a Line Number

	Module Variables
	Setting Tracepoints or Breakpoints on Module Variables
	Module Variables and the DUMP Command

	Tracing Logic of the cust_order Program
	In This Chapter
	Overview of the Debugging Session
	Setting Tracepoints for the Current Session
	Setting the First Tracepoint
	Setting the Second Tracepoint

	Setting Breakpoints for the Current Session
	Setting Tracepoints and Breakpoints Without Enabling�Them
	Setting the First Breakpoint
	Setting the Second Breakpoint

	Tracing Program Logic: Example #1
	The ENABLE Command
	Starting the Session
	Reaching the First Breakpoint
	Resuming Operation Following the First Breakpoint
	The AUTOTOGGLE Parameter
	Stepping Through a Function
	Stepping over a Function
	Stepping into a Function

	Tracing Program Logic: Example #2
	Modifying the Debugging Environment
	Resuming Execution
	Reaching the Second Breakpoint
	Resuming Operation Following the Second Breakpoint
	Executing a Function Interactively
	The CALL Command
	Changing a Value with the LET Command
	Entering the CALL Command
	Appearance of the Source Window
	Appearance of the Command Window
	Resuming Operation After CALL

	Execution of the Tracepoints
	Contents of the order1 File
	Output of the First Tracepoint
	Output of the Second Tracepoint

	Chapter Summary

	Analyzing Runtime Errors in the cust_order Program
	In This Chapter
	Encountering Runtime Errors
	Fatal Errors When Running a Program
	Fatal Errors When Debugging a Program

	Starting the Session
	Fatal Error #1: Exceeding Terminal Display Limits
	Producing the First Error
	The WHERE Command
	Output of the WHERE Command
	Viewing the Calling Function in�the�Source�Window

	A Possible Solution

	Fatal Error #2: Exceeding Array Bounds
	Producing the Second Error
	The VARIABLE Command
	The PRINT Command
	A Possible Solution

	Correcting the Program
	Correcting the order Module

	Recompiling the Program
	Verifying the Corrections
	Chapter Summary

	The Debugging Environment
	In This Chapter
	Debugger Screens and Parameters
	The Debugging Process
	Working in the Programmer’s Environment
	Creating a New Source Module
	Revising an Existing Module
	Compiling a Source Module
	Combining Program Modules
	Executing a Compiled Program
	Invoking the Debugger

	Working at the Command Line
	Creating or Modifying a 4GL Source File
	Compiling a Source File
	Concatenating Multi-Module Programs
	Invoking the Debugger

	Specifying the Source Program Search Path
	Specifying Keyboard Aliases
	The Debugger Screens and Windows
	Descriptions of the Debugger Displays
	Command Window
	Source Window
	Application Screen
	Help Screen
	Operating System Display

	Setting Terminal Display Parameters
	Parameters Controlled by the TURN Command
	AUTOTOGGLE
	DISPLAYSTOPS
	EXITSOURCE
	PRINTDELAY
	SOURCETRACE

	Parameters Controlled by the TIMEDELAY Command
	TIMEDELAY SOURCE
	TIMEDELAY COMMAND

	Parameters Controlled by the GROW Command
	SOURCE LINES
	COMMAND LINES

	The APPLICATION DEVICE Command

	Establishing Breakpoints and Tracepoints
	The BREAK Command
	Interactions Among Breakpoints Set on Variables
	Resuming Execution After a Breakpoint
	Removing or Disabling a Breakpoint

	The TRACE Command
	Restrictions on BREAK and TRACE Commands

	Displaying and Copying Parameters
	Displaying Values with the LIST Command
	Displaying Values with ALIAS
	Displaying Values with USE
	Saving Values with the WRITE Command
	Establishing Values with the READ Command

	Establishing Parameters from Files
	Establishing System Default Parameters
	Establishing User Default Parameters
	Establishing Program Default Parameters
	Using Nondefault .4db Files

	Exiting from the Debugging Environment
	Chapter Summary

	The Debugger Commands
	In This Chapter
	Functionality of the Debugger Commands
	Cursor Movement Keys and Search Commands
	Search Commands and Wildcards
	Default Search Pattern
	Cursor Movement at the Debugger Screen
	Features of the Command Window Cursor
	Features of the Source Window Cursor
	Cursor Movement in Help and Application Displays

	Control Keys for Screen Management
	Screen Management Commands
	Commands to Display Information
	Commands to Control Breakpoints and Tracepoints
	Commands to Specify Values
	Commands for Program Execution

	Scope of Reference
	The Scope of Reference Rules
	Example of Qualifying Variables

	Active Functions and Variables
	The Status of Program Execution
	Active Functions
	Active Variables
	Examples of Inactive Functions and Variables

	Short Forms of Keywords
	Conventions for Command Syntax Notation
	Capital Letters
	Italics
	Brackets
	Pipe Symbol
	Braces
	Underscore
	Ellipsis Points

	Syntax of the Debugger Commands
	Specific Restrictions on Debugger Commands
	Multiple Command and Continuation Symbols
	ALIAS
	APPLICATION DEVICE
	BREAK
	CALL
	CLEANUP
	CONTINUE
	DATABASE
	DISABLE
	DUMP
	ENABLE
	ESCAPE
	EXIT
	FUNCTIONS
	GROW
	HELP
	INTERRUPT
	LET
	LIST
	NOBREAK
	NOTRACE
	PRINT
	READ
	REDRAW
	RUN
	SCREEN
	SEARCH
	STEP
	TIMEDELAY
	TOGGLE
	TRACE
	TURN
	USE
	VARIABLE
	VIEW
	WHERE
	WRITE

	Environment Variables
	Calling C Functions
	Sample Programs
	Notices
	Error Messages
	Index

